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Abstract

Motivated by the question of basing cryptographic protocols on stateless tamper-proof hard-
ware tokens, we revisit the question of unconditional two-prover zero-knowledge proofs for NP.
We show that such protocols exist in the interactive PCP model of Kalai and Raz (ICALP ’08),
where one of the provers is replaced by a PCP oracle. This strengthens the feasibility result of
Ben-Or, Goldwasser, Kilian, and Wigderson (STOC ’88) which requires two stateful provers. In
contrast to previous zero-knowledge PCPs of Kilian, Petrank, and Tardos (STOC ’97), in our
protocol both the prover and the PCP oracle are efficient given an NP witness.

Our main technical tool is a new primitive that we call interactive locking, an efficient
realization of an unconditionally secure commitment scheme in the interactive PCP model. We
implement interactive locking by adapting previous constructions of interactive hashing protocols
to our setting, and also provide a direct construction which uses a minimal amount of interaction
and improves over our interactive hashing based constructions.

Finally, we apply the above results towards showing the feasibility of basing unconditional
cryptography on stateless tamper-proof hardware tokens, and obtain the following results:

• We show that if tokens can be used to encapsulate other tokens, then there exist uncondi-
tional and statistically secure (in fact, UC secure) protocols for general secure computation.

• Even if token encapsulation is not possible, there are unconditional and statistically secure
commitment protocols and zero-knowledge proofs for NP.

• Finally, if token encapsulation is not possible, then no protocol can realize statistically
secure oblivious transfer.
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1 Introduction

What is the minimal amount of trust required for unconditionally secure cryptography? Uncon-
ditional cryptography can be based on trusted two-party functionalities such as oblivious trans-
fer [Rab81, Kil88] or noisy channels [CK88], on bounded storage assumptions [Mau92], on the
presence of an honest majority [BGW88, CCD88, RB89], or even on the presence of a dishonest
majority of non-communicating parties [BGKW88]. More recently, there has been a considerable
amount of work on cryptographic protocols in which parties can generate and exchange tamper-
proof hardware tokens. In this model it was shown that unconditionally secure commitments [MS08]
or even general secure two-party computation [GIS+10] are possible, provided that the tokens can
be stateful. In particular, stateful tokens can erase their secrets after being invoked. The present
work is motivated by the goal of establishing unconditional feasibility results for cryptography us-
ing stateless hardware tokens. This question turns out to be related to the classical question of
unconditional multi-prover zero-knowledge proofs, which we revisit in this work. We start with
some relevant background.

1.1 Multi-Prover Zero-Knowledge

Since the introduction of zero-knowledge proofs in the seminal work of Goldwasser, Micali, and
Rackoff [GMR89], a large body of work has been devoted to understanding the capabilities and
limitations of such proofs. A particularly successful line of research studied the power of statis-
tical zero-knowledge (SZK) proofs — ones which guarantee that even computationally unbounded
verifiers can learn nothing from the interaction with the prover. In contrast to computational zero-
knowledge proofs [GMW91], a major limitation of SZK proofs which restricts their usefulness in
cryptography is that they seem unlikely to cover the entire class of NP [For89, AH91]. The related
goal of obtaining any kind of unconditional zero-knowledge proofs for NP, which do not rely on
unproven intractability assumptions, seems as unlikely to be achieved (cf. [OW93]) at least until
the elusive P vs. NP question is resolved.

Motivated by the above goals, Ben-Or, Goldwasser, Kilian, and Wigderson [BGKW88] intro-
duced in 1988 the model of multi-prover interactive proofs (MIPs), a natural extension of the
standard model of interactive proofs which allows the verifier to interact with two or more non-
communicating provers. The main result of [BGKW88] is an unconditional two-prover SZK proof
for any language in NP (see [LS95, BFL90, DFK+92] for subsequent improvements). A direct
cryptographic application suggested in [BGKW88] is that of proving one’s identity using a pair of
bank cards. We will further discuss these types of applications later.

In a very surprising turn of events, the initial work on zero-knowledge in the MIP model led to
a rapid sequence of developments that have literally transformed the theory of computer science.
This line of research culminated in the first proof of the PCP Theorem [AS98, ALM+98].

The notion of probabilistically checkable proofs (PCPs) is very relevant to our work. In 1988,
Fortnow, Rompel, and Sipser [FRS88] suggested an alternative model for MIPs in which multiple
provers are replaced by a single oracle, subsequently called a PCP oracle or just a PCP. The
difference between an oracle and a prover is that an oracle, like a classical proof, cannot keep an
internal state. When a prover is asked multiple queries, the answer to each query can depend on all
previous queries, whereas the answer of an oracle to each query must depend on that query alone.
The latter difference makes soundness against PCP oracles easier to achieve than soundness against
provers, which explains the extra power of PCPs over traditional interactive proofs. However,
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as already observed in [BGKW88], the zero-knowledge property becomes harder to achieve when
converting provers into oracles because oracles have no control over the number of queries made by
a dishonest verifier. In particular, if the verifier may query the entire domain of the oracle (as in
the case of traditional polynomial-length PCPs) then the oracle can no longer hide any secrets.

The question of replacing zero-knowledge provers by stateless oracles is motivated by practical
scenarios in which verifiers can “reset” provers to their initial state, say by cutting off their power
supply. (Note that similarly to zero-knowledge provers, zero-knowledge PCP oracles should be
randomized in the sense that their answer depends both on the query and on a secret source of
randomness which is picked once and for all when the oracle is initialized.) This motivation led
to a recent line of work on resettable zero-knowledge, initiated by Canetti, Goldreich, Goldwasser,
and Micali [CGGM00]. The main results from [CGGM00] show that, under standard cryptographic
assumptions, there exist resettable (computational) zero-knowledge proofs for NP. However, results
along this line do not seem relevant to the case of unconditional (and statistical) zero-knowledge
proofs, which are the focus of the present work.

Zero-knowledge PCPs. The question of unconditional zero-knowledge PCPs was studied by
Kilian, Petrank and Tardos [KPT97] (improving over previous results implicit in [DFK+92]). Specif-
ically, it is shown in [KPT97] that any language in NEXP admits a proof system with a single
PCP which is statistical zero-knowledge against verifiers that can make any polynomial number
of PCP queries (but are otherwise computationally unbounded). However, as expected from proof
systems for NEXP, the answers of the PCP oracle cannot be computed in polynomial time. This
still leaves hope for scaling down the result to NP and making the PCP oracle efficient given an
NP witness. Unfortunately, such a scaled down version presented in [KPT97] has the undesirable
side effect of scaling down the zero-knowledge property as well, effectively restricting the number
of queries made by a cheating verifier to be much smaller than the (fixed polynomial) entropy of
the oracle. Thus, compared to typical feasibility results in cryptography, the results of [KPT97] for
NP require us to either make an unreasonable assumption about the computational capability of
the (stateless) prover, or to make an unreasonable assumption about the limitations of a cheating
verifier.

Interactive PCPs. The above state of affairs motivates us to consider the Interactive PCP
(IPCP) model, which was recently put forward by Kalai and Raz [KR08] and further studied
in [GKR08b]. This model can be seen as lying in between the pure PCP model and the pure MIP
model, thus aiding us in our quest for a “minimal” model for efficient unconditional zero-knowledge
proofs for NP. In the IPCP model there is one interactive prover as in the MIP model and one
PCP as in the PCP model. The study of IPCPs in [KR08] was motivated by the efficiency goal of
allowing shorter PCPs for certain NP languages than in the traditional PCP model, at the price of
a small amount of interaction with a prover. In contrast, our use of the IPCP model is motivated by
the feasibility goal of obtaining unconditional zero-knowledge proofs for NP with polynomial-time
prover and PCP oracle. Another difference is that while in the context of [KR08] a PCP is at least
as helpful as a prover, the zero-knowledge property we consider is harder to satisfy with a PCP
oracle than with a prover (as discussed above). The IPCP model can be made strictly stronger
than the MIP model by requiring soundness to hold also with respect to stateful PCP oracles. We
tackle this stronger variant as well, but we stick to the basic IPCP model by default.

To meaningfully capture zero-knowledge proofs with polynomial-time provers in the IPCP
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model, we extend the original IPCP model from [KR08] in two natural ways. First, we allow
the PCP to be randomized. Concretely, we assume that both the prover and the PCP are imple-
mented by polynomial-time algorithms with three common inputs: an instance x, a witness w, and
a random input r. (This is analogous to earlier models for efficient multi-prover zero-knowledge
proofs for NP.) The length of both w and r is polynomial in |x|. Second, as discussed above, in
order to allow the PCP oracle to hide secrets from the verifier we need to use PCP oracles with a
super-polynomial query domain, and we restrict cheating verifiers to make (an arbitrary) polyno-
mial number of queries to the oracle, but otherwise allow them to be computationally unbounded.
Note, however, that in contrast to the solutions from [KPT97] we cannot use PCP oracles with a
super-polynomial entropy since we want our PCP to be efficiently implementable.

This gives rise to the following feasibility question:

Are there (efficient-prover) statistical zero-knowledge proofs for NP in the interactive
PCP model?

1.2 Our Results

We answer the above question affirmatively, presenting an unconditional SZK proof for NP in the
interactive PCP model with efficient prover and PCP oracle. Zero-knowledge holds against cheating
verifiers which can make any polynomial (in fact, even sub-exponential) number of PCP queries,
but are otherwise computationally unbounded. Our protocol can be implemented in a constant
number of rounds. We also show how to get a similar protocol (with a non-constant number of
rounds) in the stronger variant of the IPCP model in which a cheating PCP oracle may be stateful,
thus strengthening the previous feasibility result from [BGKW88].

Interactive locking. The main technical tool we use to obtain the above results (as well as
additional applications discussed below) is a new primitive which we call an interactive locking
scheme (ILS). This primitive extends in a natural way the notion of non-interactive locking schemes
which were defined and implemented in [KPT97]. The original locking primitive can be viewed as
a PCP-based implementation of a non-interactive commitment with statistical hiding and binding.
Roughly speaking, a locking scheme is an oracle which hides a secret that can later be revealed to
the receiver by sending it a decommitment key. Given access to the oracle alone, it is hard for the
receiver to learn anything about the secret. However, it is easy for the receiver to become convinced
that at most one secret can be successfully decommitted even when the oracle is badly formed.

The locking scheme from [KPT97] requires the oracle to have bigger entropy than the number
of queries against which the hiding property should hold. We prove the intuitive fact that such
a limitation is inherent, and therefore there is no efficient-oracle non-interactive locking scheme
which resists an arbitrary polynomial number of queries. This is because intuitively if the entropy
of the oracle is bounded, then either: (1) the receiver is able to learn all the entropy by making a
polynomial number of queries, and therefore break the hiding property; or (2) if some entropy is
hidden no matter what queries the receiver makes, then a cheating sender is able to create a “fake”
oracle that can cheat on this entropy and therefore be opened to any value, breaking the binding
property.

This motivates our notion of an interactive locking scheme. An ILS is a locking scheme in the
IPCP model: the commitment phase can involve, in addition to oracle queries by the receiver,
interaction with the sender from whom the secret originated. Here the sender and the oracle play
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the roles of the prover and PCP oracle in the IPCP model, respectively. Decommitment still
involves a single message from the sender to the receiver. Somewhat surprisingly (and counter to
our own initial intuition), we show that interaction can be used to disrupt the intuitive argument
above.

We present several constructions of efficient interactive locking schemes. We show how to obtain
such schemes from interactive hashing — a primitive which was introduced by Naor, Ostrovsky,
Venkatesan, and Yung [NOVY98] for the purpose of constructing statistically hiding and computa-
tionally binding commitment schemes from any one-way permutation (see also [OVY93a, DHRS04,
HR07]). The high level idea of the transformation from interactive hashing to ILS is to “imple-
ment” a one-way permutation by an oracle which contains a random point function (i.e., a function
that outputs 0 on all but one random point). To ensure the binding property even when the oracle
is badly formed, the receiver should query the oracle on a small number random points to verify
that it is not “too far” from a point function. The (black-box) proof of security of the interactive
hashing protocol implies (unconditional) proof of security for the ILS.

The above connection allows us to use interactive hashing protocols from the literature for
obtaining interactive locking schemes, but leaves open the question of minimizing the amount of
interaction with the sender. We resolve this question by presenting a novel direct construction of
ILS which requires only a single round of interaction with the sender.

The high level idea behind our single round ILS is as follows. The oracle π constructed by
the sender will be the zero function over {0, 1}n except for an “interval” of size 2cn: π(x) = 1
for a ≤ x ≤ a + 2cn and π(x) = 0 elsewhere. Depending on whether the sender commits to zero
or one, the interval will be planted in the first or second half of the oracle π and reveal a to the
receiver in the decommitment phase. By choosing the size of the interval 2cn small: c < 1, the
receiver will not able to ask any query from the planted interval and find out the committed bit
during the commitment phase with a non-negligible probability. But now the sender is able to
cheat by planting intervals in both the first and second half of π. The idea is to ask a “challenge”
question about the interval in such a way that the prover cannot find a pair of planted intervals in
the first and second half of π with the same challenge answer. A natural idea is to use a pairwise
independent hash function h : {0, 1}n → {0, 1}dn and ask the prover to reveal h(a). The prover is
able to plant at most 2(1−c)n separate intervals in each half of π. Each of the intervals in the first
and second half of π will have the same hashes with probability 2−dn. Therefore if 2(1 − c) < d,
then with high probability over the choice of h the prover is not able to find two intervals with the
same hash value h(a) and thus gets committed to a fixed bit. But now the information revealed
by h(a) might help the receiver to run a smarter search to find a non-zero point in π and find
out the committed bit. We give a specific construction of pairwise independent hash functions
where the preimages of any hash value are “scattered” in the domain of the hash function. The
scattered-preimages property prevents the receiver to take advantage of knowing h(a) and find out
where the interval is planted. Therefore we get both the binding and the hiding properties.

Cryptography using hardware tokens. The above study of zero-knowledge interactive PCPs
and interactive locking schemes is motivated by a recent line of research on the capabilities of
cryptographic protocols in which parties can generate tamper-proof hardware tokens and send them
to each other. Katz [Kat07] shows that, under computational assumptions, general universally
composable (UC) secure two-party computation [Can01] is possible in this model if the tokens
are allowed to be stateful, and in particular can erase their secrets after being invoked. It was
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subsequently shown that even unconditional security is possible in this model, first for the case
of commitment [MS08] and then for general tasks [GIS+10]. See [GO96, GKR08a, HL08] and
references therein for other applications of stateful tokens in cryptography.

Obtaining similar results using stateless tokens turns out to be more challenging. Part of the
difficulty stems from the fact that there is no guarantee on the functionality of tokens generated
by malicious parties — they may compute arbitrary functions of their inputs and may even carry
state information from one invocation to another. It was recently shown in [GIS+10], improving
on [CGS08], that any one-way function can be used for basing (computationally) UC-secure two-
party computation on stateless tokens. More practical protocols which satisfy weaker notions
of security were given in [Kol10]. These works leave open the question of obtaining a similar
result unconditionally, and with statistical security. (To get around impossibility results in the
plain model, the number of queries to a token should be polynomially bounded, but otherwise
malicious parties may be computationally unbounded.) In fact, the constructions from [CGS08,
GIS+10, Kol10] may lead to a natural conjecture that achieving statistical security in this setting
is impossible, since in these constructions all the “useful information” contained in tokens can be
learned by a computationally unbounded adversary using a polynomial number of queries.

However, similar to the case of ILS discussed above, the combination of stateless tokens and
interaction turns out to be surprisingly powerful. As already alluded to in [BGKW88], MIP proto-
cols can naturally give rise to protocols in the hardware token model. In our case, we implement
the ILS (or IPCP) by having a single sender (prover) create a stateless tamper-proof hardware
token which implements the PCP oracle and send it to the receiver (verifier). Applying this to our
results, this directly gives rise to the first unconditionally secure commitment protocols and SZK
proofs for NP using stateless tokens.

We show how this can be extended to general unconditionally secure (in fact, UC-secure) two-
party computation if parties are allowed to build tokens which encapsulate other tokens: namely,
the receiver of a token A is allowed to build another token B which internally invokes A. The
high level idea is the following. By the completeness of oblivious transfer (OT) [Kil88, IPS08], it
suffices to realize OT using stateless tokens. This is done as follows. The OT sender’s input is a
pair of strings (s0, s1) and the OT receiver’s input is a selection bit b. The OT receiver commits
b using an ILS. Applying our best construction, this involves sending a token A to the OT sender
and responding to a random challenge message received from the OT sender. The OT sender now
prepares and sends to the receiver a token B with the following functionality. Token B accepts a
selection bit b along with a corresponding decommitment message. It checks that the decommitment
is valid (this involves invocations of the token A, which token B encapsulates) and then returns
the string sb if decommitment was successful. The binding property of the ILS guarantees that the
OT receiver can learn at most one string sb. The hiding property of the ILS guarantees that the
sender cannot learn b.

Interestingly, we also show a matching negative result: if token encapsulation is not allowed,
then statistically secure OT is impossible (regardless of UC-security). The proof of this negative
result employs the recent notion of accessible entropy from [HRVW09] and the high level idea is
as follows. One way to explain why unconditional OT (even over random inputs) is not possible
in the standard model of interaction is that at any time during the interaction a computationally
unbounded party (e.g. the OT receiver R) is able to sample from the space of its randomness
rR conditioned on what the other party (i.e. OT sender S) knows about R’s computation. The
latter information is captured by the transcript τ of the protocol. Therefore if at the end of
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the interaction the distribution of rR conditioned on τ is not revealing the receiver’s bit b, the
receiver can sample from (rR | τ) and find out both of the strings (s0, s1). If such sampling is done
efficiently [HRVW09] says that the protocol has accessible entropy. In the token model, however,
the exchanged information about Alice and Bob is not symmetric and Bob might not know which
queries Alice has asked from Bob’s tokens. Similar to the standard model we define a protocol
(A,B) in the token model to have accessible entropy if the parties can (information theoretically)
sample their history of computation so far only conditioned on the other party’s view. Similar
to the standard model, accessing the entropy of a protocol for OT in the token model can be
used to break its security for the benefit of either of the parties. We prove the following technical
lemma: For any protocol (A,B) in the stateless token model, there is another protocol (A′, B′)
where (1): the parties in (A′, B′) emulate the original protocol (A,B), (2) (A′ and B′ also learn
more information about the tokens they hold along the emulation of (A,B) but still ask poly(n)
number of queries, and more importantly (3): almost all the entropy of A′ and B′ in (A′, B′) is
accessible. This lemma, together with the necessity of inaccessible entropy for the possibility of
OT proves that unconditional OT does not exist in the stateless token.

Organization. In Section 2, we define the notions of zero-knowledge IPCPs and ILS, and show
how to use ILS to build unconditional zero-knowledge IPCPs for NP. We also show that interaction
is required for efficient ILS. In Section 3, we show how to construct ILS. In Section 6, we show
the implications of our work on (unconditionally secure) cryptography with tamper-proof hardware
tokens.

2 Preliminaries

2.1 Basics about Probabilities

By sup(X) we mean the support set of the random variable X. By x ← X we mean the process
of sampling x according to the distribution of the random variable X. By (X | Y ) we denote the
random variable X conditioned on the random variable Y .

Definition 2.1. For the random variables X and Y defined over the set U (i.e. sup(X)
⋃

sup(Y ) ⊆
U) we let SD(X,Y ) denote their statistical distance defined as: SD(X,Y ) = maxE⊆U |Pr[X ∈
E]− Pr[Y ∈ E]|. We also use X ≈α Y and call X and Y α-close whenever SD(X,Y ) ≤ α.

It can be verified that the the statistical distance is the maximum advantage by which a statisti-
cal test (i.e., an algorithm A which outputs in {0, 1}) can distinguish between two random variables
X and Y : SD(X,Y ) = maxA |Pr[A(X) = 1] − Pr[A(Y ) = 1]|. Also, the triangle inequality holds
for the statistical distance: SD(X,Y ) + SD(Y,Z) ≥ SD(X,Z).

Lemma 2.2. Let X = (X1, X2) and Y = (Y1, Y2) be random variables defined over the set U1×U2

and suppose SD(X,Y ) ≤ ε. Let Z = (Z1, Z2) be the random variable defined over U1 × U2 as
follows: Z1 is sampled according to X1 (defined by the distribution of X), and then Z2 is sampled
according to (Y2 | Y1) conditioned on Z1 = Y1. Then it holds that SD(Y, Z) ≤ ε and therefore by
the triangle inequality SD(X,Z) ≤ 2ε.

Proof. Let SD(Y,Z) ≥ ε and let A be the algorithm that distinguishes between Y and Z with
advantage ≥ ε. Then one can distinguish between X and Y with advantage more than ε as well
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by the following algorithm. Given the input W = (W1,W2) (which is either sampled according
to X or Y ) we take the first component W1 and sample Y2 conditioned on Y1 = W1 according to
the distribution of Y . We then apply the test A over (W1, Y2). It is easy to see that the new test
distinguishes between Y and X as well as A does between Y and Z.

Lemma 2.3 (Lemma 6.4 of [IR89]). Let Z1, . . . , Zi, . . . be any sequence of random variables deter-
mined by a finite underlying random variable X, let E be any event for random variable X, and let
0 ≤ p ≤ 1. Let Bj be the event that PrX [E(X) | Z1, . . . , Zj ] ≥ p, and let B =

∨
j Bj. Then it holds

that PrX [E[X] | B] ≥ p.

2.2 Interactive Algorithms

We assume that the reader is familiar with the notion of interactive Turing Machines introduced
in [GMR89] which here we call interactive algorithms. An interactive protocol is defined by tow
interactive algorithms A and B where each of A and B may have its own private input, private
random tape, and output. By 〈A,B〉(x) we denote the output of B when A and B interact on
the common input x. We take the output 1 to denote an “accept” and the output 0 to denote a
“reject”. When x is clear from the context we might omit it from the notation (e.g., letting 〈A,B〉
denote 〈A,B〉(x)).

By an efficient algorithm we mean one which runs in polynomial time over its input length.
We do not assume the interactive algorithms to be necessarily efficient unless explicitly mentioned.
We always let n denote the length of the input x which will also serve as the security parameter
when A and B are efficient.

A round consists of a message from A followed by another message from B assuming that A
starts the protocol. The round complexity of the protocol (A,B) is the maximum number of rounds
that A and B interact as a function of the input length n.

The view of an interactive algorithm consists of its input, its randomness and the answers
received from the other interactive algorithm participating in the protocol.

We use the notation Â to denote a possibly malicious interactive algorithm participating in a
protocol instead of the honest interactive algorithm A.

Although one of the main applications of the interactive protocols is to use them as a “proof
system” [GMR89], here we define their basic properties in a more abstract level so that we can use
them in the next section in the extended model of Interactive PCPs.

Definition 2.4 (Properties of interactive protocols). Let (P, V ) be an interactive protocol com-
posed of a prover P and a verifier V . We define the following properties for (P, V ).

• Soundness: (P, V ) is (1 − δ)-sound for the input x, if for every prover P̂ it holds that
Pr[〈P̂ , V 〉(x) = 1] ≤ δ.

• Statistical zero-knowledge (SZK): (P, V ) is ε(n)-SZK for the language L if there is a simu-
lator Sim that gets oracle access1 to an arbitrary (unbounded) verifier V̂ , runs in time poly(n),
and if x ∈ L then SimV̂ produces a view for V̂ which is ε(n)-close to the view of V̂ when inter-
acting with P on the input x. A query qsim = (rV , a1, . . . , ai) of the simulator Sim to the oracle
V̂ consists of the randomness rV for V̂ and a set of first i messages of the prover a1, . . . , ak to
the verifier. The answer aver = (q1, . . . , qi+1) returned by the oracle V̂ consists of the first i+1

1All the zero-knowledge constructions in this paper use black-box simulators.
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messages of the verifier V̂ when rV is used as the randomness and a1, . . . , ak are received from
the prover. Thus the simulator Sim, in general, can “rewind” V̂ by asking queries of the form
qsim = (rV , a1, . . . , ai) and q′

sim
= (rV , a1, . . . , ai−1, a

′
i). The simulator Sim is called straight-

line if its queries are of the following “incremental” form: (rV ), (rV , a1), . . . , (rV , a1, . . . , ai)
and the output of SimV̂ is the last query of Sim: (rV , a1, . . . , aj). It is easier to think of a
straight-line simulator as an interactive algorithm which simply interacts with the verifier V̂
and outputs the view of V̂ in this interaction.

Note that the soundness is only a property of the verifier V while zero-knowledge is only a
property of the prover P .

Inefficient verifiers with large randomness. To prove the zero-knowledge for inefficient ver-
ifiers V̂ with super-polynomially long randomness, we slightly change the simulator’s behavior
of Definition 2.4 as follows. We let the oracle V̂ to choose the randomness rV uniformly at
random (hidden from the simulator) and the simulator’s queires would only consist of prover’s
messages qsim = (a1, . . . , ai). Also the simulator’s output will be the last query of the simulator
qsim = (a1, . . . , aj) joint with the randomness rV chosen by the verifier (and yet (rV , a1, . . . , aj)
should be ε-close to the view of V̂ when interacting with P ). All of our simulators in this paper
will be of this form to let us handling arbitrarily inefficient verifiers.

Definition 2.5 (Composition of interactive protocols). Let (P1, V1), . . . , (Pk, Vk) be k interactive
protocols. By (Pseq, Vseq) we mean the sequential composition of (P1, V1), . . . , (Pk, Vk) defined as
follows.

• Let x be the common input.

• Vseq uses independent random coins rV1 , . . . , rVk
for V1, . . . , Vk and Pseq uses independent coins

rP1 , . . . , rPk
for P1, . . . , Pk.

• Pseq and Vseq first interact according to the protocol (P1, V1) over the input x, and after that
interact according to the protocol (P2, V2) (over the asme input x) and so on.

• At the end Vseq rejects if any of Vi’s reject.

By (Ppar, Vpar) we mean the parallel composition of (P1, V1), . . . , (Pk, Vk), which is defined sim-
ilar to (Pseq, Vseq) with the difference that V1, . . . , Vk interact with the prover Ppar in a round-
synchronized way. Namely in the j’th round of the interaction, Vpar sends the queries qj1, . . . , q

j
k to

the prover Ppar where qji is the j’th query of Vi (and qji = ⊥ if Vj ’s interaction finishes before the
j’th round). Then Vseq receives k answers aj1, . . . , a

j
k and Vi uses ai as its answer to continue its

execution.2

Both (Pseq, Vseq) and (Ppar, Vpar) are special cases of concurrent composition (Pcon, Vcon) in which
the verifier runs V1, . . . , Vk and the prover runs P1, . . . , Pk in a way that Vi will be interacting with
Pi in the i’th “sessions”. There is not any round synchronization enforced across different sessions.
The honest verifier Vcon will send the next query qji (i.e. the j’th query of Vi) when she receives the
answer aj−1

i from Pi in the i’th session, but a cheating verifier V̂con might delay sending such query

2To define the parallel composition, we do not necessarily assume (P1, V1), . . . , (Pk, Vk) to have equal round com-
plexity, and the round complexity of (Ppar, Vpar) will be the maximum of the round complexity of (P1, V1), . . . , (Pk, Vk).
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to gather more answers in different sessions before continuing. On the other hand the honest prover
Pcon will send the answer aji back whenever he receives the query qji from Vcon, but a cheating prover
P̂con might delay sending such answer to gather more queries in different sessions before continuing.

By using simple “delay policies”, both the prover and the verifier (when the other party is hon-
est) are able to force a concurrent composition to behave like a parallel or sequential composition.

The inputs in composed protocols. In all variants of compositions defined above (including
the concurrent composition), the same input x is used in all the sub-protocols. More general
definitions of concurrent composition allow different inputs to be used in different instances of the
protocol, but our definition still generalizes the parallel and sequential definitions and is enough
for our purposes. Moreover, the properties of the concurrent composition described in Lemma 2.13
below (in particular the SZK property) hold in the more general form of concurrent composition
with different inputs (as long the inputs are fixed at the beginning of the execution of the system.)

Lemma 2.6 (Properties of composition of interactive protocols). Let (P1, V1), . . . (Pk, Vk) be k in-
teractive protocols, and let (Pseq, Vseq), (Ppar, Vpar), (Pcon, Vcon) be, in order, their sequential, parallel,
and concurrent compositions. It holds that:

1. Soundness [BM88]: If (Pi, Vi) is (1 − δi)-sound over the input x for all i ∈ [k], then
(Pcon, Vcon) (and in particular (Pseq, Vseq) and (Ppar, Vpar)) will have soundness 1−

∏
i δi.

2. SZK [KLR06]: If (Pi, Vi) is εi-SZK for the language L with a straight-line simulator for all
i ∈ [k], then (Pcon, Vcon) (and in particular (Pseq, Vseq) and (Ppar, Vseq)) will be (

∑
i εi)-SZK

for L with a straight-line simulator.

Part 1 of Lemma 2.6 is proved in [BM88] for the case of parallel composition, but the proof
extends to the concurrent composition as well. The proof of Part 2 of Lemma 2.13 follows by a
standard hybrid argument similar to the proof of Part 2 in Lemma 2.17 below.

2.3 Oracle Algorithms

We use the standard notation Aπ to denote an oracle algorithm A accessing the oracle π. For the
oracles π1, . . . , πk, by π = (π1| . . . |πk) we mean their combined oracle defined as follows: Given the
query (i, q), π answers as π(i, q) = πi(q). We allow an oracle algorithm Aπ to ask multiple oracle
queries from π in one round of queries.

By a malicious stateful oracle π̂ we mean an interactive algorithm whose honest behavior is
like an oracle. In other words, given a round of queries q1, . . . , qk, π returns π(q1), . . . , π(qk), but
a malicious stateful oracle π̂ accessed by the oracle-algorithm A can respond the queries similar to
a malicious interactive algorithm interacting with A. That is, π̂’s answer to a query q can depend
on the common input x, or the previous queries of A asked from π̂, or other queries being asked in
the same round as q.

Definition 2.7 (Parallel composition of oracle algorithms). Let Aπ1
1 , . . . , Aπk

k be k oracle algorithms
with access to k oracles π1, . . . , πk where for all i ∈ [k] Ai asks at most t rounds of oracle queries
from πi. We define Aπpar

par the parallel composition of Aπ1
1 , . . . , Aπk

k as follows.

• The oracle πpar = (π1| . . . |πk) is the combined oracle of π1, . . . , πk.
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• Aπpar
par emulates Aπ1

1 , . . . , Aπk
k in parallel as follows. Let q be one of the queries of Ai in its j’th

round of queries to πi. Apar asks (i, q) from πpar in its j’th round of queries and returns the
answer to Ai.

• Aπpar
par rejects if any of the emulated algorithms Aπ1

1 , . . . , Aπk
k reject.

2.4 Interactive PCPs

Interactive PCPs (Definition 2.8 below) were first introduced in [KR08] and combine the notion of
oracle algorithms with interactive algorithms. Similar to the previous section, here also we define
IPCPs in a general way, not only for the purpose of a proof system, but rather as a model of
interaction consisting of interactive algorithms and a prover.

Definition 2.8. (Adapted from [KR08]) An interactive probabilistically checkable proof (IPCP)
Γ = (P, π, V ) consists of an interactive algorithm P (the prover), an oracle π (the PCP oracle),
and an interactive algorithm V (the verifier) such that:

• P and π share common randomness rP , and V is given the randomness rV .

• P , π, and V will be given an input x of length |x| = n. P and π may also receive a common
private input w.3

• The PCP oracle π is a function of (rP , x, w, q) where q is a query of the verifier V . Since
(rP , x, w) is fixed at the beginning of the protocol, we might simply use π(q) to denote the
answer to the query q.

• P and V π engage in an interactive protocol during which V can query the PCP oracle π and
at the end V accepts or rejects.

By an efficient IPCP we mean one in which the prover P , the PCP oracle π, and the verifier V
run in polynomial time over the input length |x| = n.

Definition 2.9 (Properties of IPCPs). Let Γ = (P, π, V ) be an IPCP. We define the following
properties for Γ.

• Soundness: Γ is (1− δ)-sound for input x, if for every prover and oracle (P̂ , π̂) it holds that
Pr[〈P̂ , V π̂〉(x) = 1] ≤ δ.

• Adaptive-soundness: Γ is (1 − δ)-adaptively-sound for input x, if for every prover P̂ and
every stateful oracle π̂ it holds that Pr[〈P̂ , V π̂〉(x) = 1] ≤ δ.

• Statistical zero-knowledge (SZK): The SZK property is defined as an extension to the
SZK property of interactive protocols (Definition 2.4) with respect to a language L. Since all
of our simulators in this paper are straight-line, for sake of simplicity here we only describe
how to extend the definition to SZK of IPCPs for straight-line simulators.

– The straight-line simulator interacts with a (potentially malicious) verifier V̂ , while the
simulator Sim receives all the queries of the the verifier (including both the queries asked
from the prover and from the oracle) and responds to them.

3For example when (P, π) are efficient and L ∈ NP, w could be a witness for x ∈ L.
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– Since an unbounded verifier can ask arbitrary number of queries from its oracle, here we
put a bound u on the number of oracle queries asked by V̂ . More formally we say that
Γ is (u(n), ε(n))-SZK (with a straight-line simulator), if there is a simulator described as
above such that for any v ≤ u, if V̂ asks at most v oracle queries, then Sim runs in time
poly(n, v) and produces a view for V̂ which is ε-close to the view of V̂ when interacting
with (P, π).

Note that when u(n) is super-polynomial, Definition 2.10 implies the standard notion of zero-
knowledge against polynomial-time verifiers.

Definition 2.10 (SZK-IPCP for languages). We say that Γ = (P, π, V ) is an SZK-IPCP for the
language L with SZK (u(n), ε(n)) and (adaptive) soundness 1− δ(n) if the following holds:

• Completeness: If x ∈ L, then Pr[〈P, V π〉(x) = 1] = 1.

• (Adaptive) soundness: Γ has (adaptive) soundness 1− δ if for all x 6∈ L, the verifier V is
(1− δ(n))-(adaptively)-sound. Namely for all provers P̂ and (stateful) oracles π̂ it holds that
Pr[〈P̂ , V π̂〉(x) = 1] ≤ δ(n).

• Statistical zero-knowledge (SZK): Defined according to the definition of SZK in Defini-
tion 2.9.

We simply call Γ an SZK-IPCP for L with (adaptive) security u, if Γ is (1−1/u)-(adaptively)-sound
and (u, 1/u)-SZK.

Round complexity of IPCPs. By the round complexity of an IPCP we mean the number of
rounds of interaction between the verifier and the prover (and not the PCP oracle) where each
round consists of a message from the verifier followed by a message from the prover. In particular,
the round i for the verifier starts after the i− 1’th message of the prover is sent and ends when the
i’th query of the verifier to the prover is sent (which will be followed be a message from the prover).
Thus in each round the verifier behaves like an oracle-algorithm. The reasons to only consider the
interaction with the prover as a factor in round complexity are as follows.

1. In our constructions of SZK-IPCPs, the number of rounds of oracle queries is either equal
to one (Theorem 3.1) or is bounded by the number of rounds of interaction with the prover
(Theorem 3.2). On the other hand our negative results (Part 2 of Theorem 4.1) is regardless
of number of rounds of oracle queries.

2. Regarding the application of IPCPs to the stateless hardware token model, the queries from
the PCP oracle are asked locally (as opposed to the queries from the prover which are sent
to a remote party). Therefore the number of rounds of interaction with the prover is a more
meaningful measure of the efficiency of the system.

Let Γ be an IPCP with j rounds. We can always decompose the verifier’s randomness into
rV = (r1

V , . . . , r
j
V ) so that for the first i rounds only the first i parts (r1

V , . . . , r
i
V ) are used by the

verifier. A trivial decomposition is to let r1
V = rV and riV be the empty string for i ≥ 2, but that

might not be the “natural” decomposition of the randomness.
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Definition 2.11 (Public-coin IPCPs). By a public-coin IPCP we mean an IPCP where the prover
gets to see the coin tosses of the verifier all along the interactions. Namely the verifier’s randomness
is decomposable into rV = (r1

V , . . . , r
j
V ) such that riV is publicly reviled (to the prover) at the

beginning of round i and (r1
V , . . . , r

i
V ) is used by the verifier in round i.

Comments about public-coin IPCPs.

• As a mental experiment we can always assume that the whole randomness rV is chosen at
the beginning and it is only reviled part by part to the prover and is used by the verifier.

• Without loss of generality we can always assume that riV is the i’th message of the verifier
to the prover. That is because the prover knows the content of the oracle π and thus can
determine the verifier’s query at the end of round i by only knowing (r1

V , . . . , r
i
V ). Despite

this fact, it might still be conceptually simpler to describe the verifier’s query in other ways.

• Being public-coin is part of the definition of the model and it might change the soundness of
an IPCP. Namely, and IPCP might be 0.99-sound when considered as a (regular) IPCP over
an input, but only 0.01-sound when considered as public-coin IPCP.

• When considering adaptive soundness (against stateful oracles), the public-coin IPCP model
is only as strong as a two-party (i.e. single prover) interactive protocol. The reason is that
the prover and the oracle both get full information about the verifier’s messages to both of
them and thus can play as a unified party. (For the same reason fully-public-coin multi-prover
proof systems are only a special case of single prover proof systems.)

Now we define several forms of composition of IPCPs by extending the corresponding compo-
sitions of interactive algorithms (Definition 2.5) to the IPCP model. The new component in the
IPCP model compared to the model of interactive algorithms is the oracle. The oracle in all the
compositions of IPCPs discussed here is simply the combined oracle of the IPCPs being composed.
This way the i’th emulated verifier will ask its oracle queries from the i’th oracle by adding a prefix
i to its queries and asking them from the combined oracle.

Definition 2.12 (Composition of IPCPs). Let Γ1 = (P1, π1, V1), . . . ,Γk = (Pk, πk, Vk) be k IPCPs.
Let π = (π1| . . . |πk) be the oracle combination of π1, . . . , πk, and let Ui be the modified version
of Vi which asks its oracle queries from π rather than πi by adding the prefix i and asking (i, q)
from π. We define the sequential Γseq = (Pseq, πseq, Vseq), parallel Γpar = (Ppar, πpar, Vpar) and
concurrent Γcon = (Pcon, πcon, Vcon) composition of Γ1, . . . ,Γk, in order, as the sequential, parallel,
and concurrent composition of (P1, U

π
1 ), . . . , (Pk, Uπk ) (note that πseq = πpar = πcon = π). In case of

parallel composition the emulated verifiers ask their oracles queries also in parallel. Namely, let U ji
denote the j’th round of the oracle algorithm Ui (i.e., after it asks its (j − 1)’th query and before
it asks its j’th query from the prover Pi). Similarly let V j

par denote the j’th round of the oracle
algorithm Vpar. The oracle algorithm V j

par will be the parallel composition of the oracle algorithms
U j1 , . . . , U

j
k according to Definition 2.7.

The definition above describes the honest behavior of the prover, oracle, and the verifier in
various forms of composition. The way malicious parties can behave in such compositions is deter-
mined both by the definition of the composition and the IPCP model. In particular, although in all
forms of composition the emulated Vi asks its oracle queries from π by adding a prefix i (simulating
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the query being asked from πi), since the oracle π is accessible by the verifier all along, a malicious
verifier is allowed to ask any query from the oracle π. Also in the case of concurrent composition,
it might be useful for a malicious stateful oracle to gather more queries from the verifier before
responding to them.

Note that similar to the case of interactive algorithms, the soundness and SZK of the concurrent
composition imply those properties (with the same parameters) for the sequential and parallel
compositions.

Lemma 2.13 (Properties of composition of IPCPs). Let Γ1 = (P1, π1, V1), . . . ,Γk = (Pk, πk, Vk) be
k IPCPs, and let Γseq,Γpar and Γcon be in order their sequential, parallel, and concurrent composi-
tions. It holds that:

1. Soundness: If Γi is (1 − δi)-sound for input x for all i ∈ [k], then Γcon (and in particular
Γseq and Γpar) will have soundness 1−

∏
i δi over the input x.

2. Adaptive-soundness: If Γi is (1− δi)-adaptively-sound for input x for all i ∈ [k], then Γseq

will have adaptive-soundness 1−
∏
i δi over the input x.

3. SZK: If (Pi, πi, Vi) is (u, εi)-SZK for the language L with a straight-line simulator for all
i ∈ [k], then Γcon (and in particular Γseq and Γpar) will be (u,

∑
i εi)-SZK for the language L

with a straight-line simulator.

In the case of sequential composition of interactive protocols it was not necessary for the simu-
lator to be straight-line to get Part 2 of Lemma 2.6, but as we will see in the proof of Lemma 2.13,
in the case of IPCPs since the verifier is allowed to query the oracle whenever she wants, we need
the simulator to be straight-line even in the case of sequential composition.

Proof. (of Lemma 2.13)

Soundness. Let P̂ be an arbitrary prover and π̂ = (π̂1| . . . |π̂k) an arbitrary oracle where π̂i is
the oracle accessed by the emulation of Vi in Vcon. We claim that Pr[〈P̂ , V π̂〉 = 1] ≤

∏
i pi and the

reason is as follows. Let V ′i = V π̂i
i be the interactive algorithm where the oracle π̂i is hardwired into

the algorithm Vi (note that V ′i is inherently inefficient). Now the interactive algorithm V ′ = V π̂
con

is the same as the concurrent composition of V ′1 , . . . , V
′
k. The crucial point is that the interactive

algorithm V ′i is well-defined regardless of which other interactive algorithms are run in parallel.
That is because πi is a fixed oracle and its answers only depend on the queries that Vi is asking
from it (i.e., πi’s answers do not change depending on other queries asked by other Vj ’s). Let
δ′i = maxP Pr[〈P, V ′i 〉 = 1], then by the soundness hypothesis it holds that

δ′i = max
P

Pr[〈P, V ′i 〉 = 1] ≤ max
P,π

Pr[〈P, V π
i 〉 = 1] ≤ δi.

Therefore by Part 1 of Lemma 2.6, it holds that

Pr[〈P̂ , V π̂
con〉 = 1] ≤ max

P
Pr[〈P, V ′〉 = 1] ≤

∏
i

δ′i ≤
∏
i

δi.

Adaptive-soundness. Suppose the sequential executions of Γ1, . . . ,Γk do not lead to a reject.
Then by the (1 − δi)-adaptive-soundness of Γi+1, Vi+1 will accept with probability at most δi
regardless of what has happened in the previous interactions and even if π̂i+1 is stateful. Thus the
probability that all of Vi’s accept is bounded by

∏
i δi.
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SZK. For an arbitrary IPCP Γ = (P, π, V ) let (P u, V ) be the interactive protocol in which P u

answers both the queries of V from the prover P and up to u oracle queries of V asked from π. If
P, π and P u are honest, then from the point of view of a verifier V who asks at most u oracle queries
there is no difference between interacting with P u or (P, π). Therefore (P u, V ) is ε-SZK for any
language L (with a straight-line simulator) if and only if Γ is (u, ε)-SZK for L (with a straight-line
simulator). Now by Part 2 of Lemma 2.6 and using the fact that Γi is (u, εi)-SZK, it follows that
(P ui , Vi) is εi-SZK for L. Let (P ucon, Vcon) be the concurrent composition of (P ui , Vi)’s for i ∈ [k]. By
Part 2 of Lemma 2.6 (P ucon, Vcon) is (

∑
i εi)-SZK for L. On the other hand, if we restrict a verifier

V to ask at most u queries from a combined oracle π = (π1, . . . , πk), the number of queries that
V can ask from the i’th sub-oracle πi (by adding the prefix i to the query) is also bounded by u.
Therefore the (

∑
i εi)-SZK property of (P ucon, Vcon) implies that Γcon is (u,

∑
i εi)-SZK for L.

We shall point out that since in the sequential composition Γseq a cheating verifier V̂seq can
ask arbitrary queries to the oracle πseq at any time during the interaction, therefore the behavior
of V̂seq in Γseq does not necessarily correspond to a cheating verifier interacting in the sequential
composition of (P ui , Vi)’s. However any cheating verifier V̂con participating in Γcon (and in particular
participating in Γseq and Γpar) always corresponds to a cheating verifier interacting in a concurrent
composition of (P ui , Vi)’s.

2.5 Interactive Locking Schemes

An Interactive locking scheme is a commitment scheme implemented in the IPCP model. A similar
definition appeared in [KPT97] without the interaction (i.e. only with an oracle), but as we will
see in Theorem 4.1 non-interactive locking schemes are inherently inefficient and therefore not as
applicable in cryptographic settings.

Definition 2.14 (Interactive locking scheme). Let Λ = (S, σ,R) be an efficient IPCP (where we
call S the sender, σ the locking oracle and R the receiver) of the following form:

• The common input is of the form 1n where n is the security parameter.

• (S, σ) receive a private input w ∈ Wn which is called the committed message as well as the
private randomness rS . The receiver R gets the randomness rR.

• The receiver R gets oracle access to the locking oracle σ and Rσ interacts with S in two phases:
(1) commitment phase and (2) decommitment phase. The decommitment phase consists of
only one message from the sender S to the receiver R which includes the committed message
w and the private randomness rS used by S. Following this message the receiver R (perhaps
after asking more queries from the oracle σ) accepts or rejects.

• Completeness: For any w ∈Wn if all parties are honest the receiver accepts with probability
one:

Pr[〈S(w), Rσ(w)〉(1n) = 1] = 1

where the probability is over the random seeds rS and rR.

Then Λ is called an interactive locking scheme (ILS) for the message space Wn and if W = {0, 1},
we call Λ a bit-ILS. When n is clear from the context we might simply use W rather than Wn to
denote the message space.
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Definition 2.15 (Properties of ILS’s). Let Λ = (S, σ,R) be an ILS. We define the following
properties for Λ.

• Binding: We define Λ to be (1 − δ)-binding if for any sender Ŝ and any oracle σ̂, with
probability at least 1− δ over the interaction of the commitment phase there is at most one
possible w such that Ŝ can decommit to successfully. More formally, let R′ be the interactive
algorithm which does the following.

1. Choose a randomness rR for the receiver R.

2. Run the commitment phase of R in Λ.

3. R′ reads all the queries of the oracle σ̂ that are of length bounded by the running time
of R (this step is inherently inefficient).

4. Knowing the content of the oracle σ̂, R′ accepts if there exist (w1, r1) and (w1, r2) such
that w1 6= w2 and R would accept both of (w1, r1) and (w1, r2) in the decommitment
phase.

Λ is (1− δ)-binding over the message space Wn iff (S, σ,R′) is (1− δ)-sound over the common
input x = 1n.

• Hiding: Let R̂ be any malicious receiver who asks at most u oracle queries from σ, and let τw
be the random variable which consists of the transcript of the interaction of R with (S, σ) till
the end of the commitment phase when the committed message is w ∈ W . Λ is (u, ε)-hiding
if for every such malicious receiver R̂ and every {w1, w2} ⊆W it holds that SD(τw1 , τw2) ≤ ε.

• Equivocability: Λ is equivocable if there is an efficient sampling algorithm Sam that given
(τ, w) where τ is the transcript (including the oracle queries) of the commitment phase of
〈S, R̂σ〉 (for an arbitrary receiver R̂) and any w ∈W , if

Pr[w is the committed message and τ is the transcript of 〈S, R̂σ〉] 6= 0

then Sam(τ, w) outputs r according to the distribution (rS | τ, w). Namely r is sampled
according to the distribution of the private randomness rS of (S, σ) conditioned on w being
the committed message and τ being the transcript of the commitment phase.

We simply call the ILS Λ u-secure if it is (1− 1/u)-binding and (u, 1/u)-hiding.

Public-coin ILS. Since ILS’s are IPCPs by definition, we define an ILS to be public-coin similar
to the way we defined public-coin IPCPs. Note that the soundness of an ILS might decrease when
considered as a public-coin system.

Round-complexity of ILS. Since the interactive part of the decommiemnt phase of any ILS
consists only of one message from the sender S to the receiver R, by the round-complexity of any
ILS we only refer to the number of rounds during its commitment phase.
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Composition of ILS’s. Different forms of composition of IPCPs can be applied to ILS’s just
as well, but here we are interested in their parallel composition and a specific variant of it. In
any k-fold composition of the ILS’s the sender receives k private messages w1, . . . , wk where each
wi ∈W is used as the private message in the i’th ILS. Therefore the message space of the composed
ILS potentially increases from W to W k. We use parallel composition to expand the message space.
We use a variant of parallel composition which uses the same message in all composed ILS’s to to
amplify the soundness of an ILS.

Definition 2.16 (Parallel Compositions of ILS’s). Let Λ1 = (S1, σ1, R1), . . . ,Λk = (Sk, σk, Rk) be
k ILS’s. By Λpar = (Spar, σpar, Rpar) we mean the the parallel composition of Λ1, . . . ,Λk as IPCPs
according to Definition 2.12. Namely, during the decommitment phase the sender Spar sends the
message ((w1, rP1), . . . , (wk, rPk

)) to the receiver Rpar who emulates the interactive algorithm Ri
over the message (wi, rPi) for i ∈ [k] (and accepts if all of them accept).

By a same-message (parallel) composition Λsmp = (Ssmp, σsmp, Rsmp) of Λ1, . . . ,Λk we mean
their parallel composition where the receiver enforces the condition that the same w1 = w2 = · · · =
wk ∈ W is used as the commmitted message in all of Λ1, . . . ,Λk. Namely, in the decommitment
phase of Λsmp, the sender Ssmp sends (w, rS1 , . . . , rSk

) to the receiver Rsmp and the receiver runs
the verification algorithm similar to Rpar but over the message ((w, rP1), . . . , (w, rPk

)).

Note that the message space of the same-message composition Λsmp stays the same as W (as
opposed to the regular parallel composition Λpar which expands the message space to W k).

Lemma 2.17 (Properties of parallel compositions of ILS’s). Let Λ1 = (S1, σ1, R1), . . . ,Λk =
(Sk, σk, Rk) be k ILS’s with the same round complexity and the same message space W , and let
Λpar = (Spar, σpar, Rpar) and Λsmp = (Ssmp, σsmp, Rsmp) be their parallel and same-message composi-
tions. Then we have:

1. Binding: If Λi is (1− δi)-binding for all i ∈ [k], then Λpar is (1−
∑

i δi)-binding and Λsmp is
(1−

∏
i δi)-binding.

2. Hiding: If Λi is (u, εi)-hiding for all i ∈ [k], then Λpar and Λsmp are both (u,
∑

i εi)-hiding.

3. Equivocability: If Λi is equivocable for all i ∈ [k], then both of Λpar and Λsmp are also
equivocable.

Proof. .

Binding. Spar of Λpar gets bound to a message (w1, . . . , wk) if all of Si’s for i ∈ [k] get bound to
a message wi. By the union bound and the (1− δi)-binding of Λi with probability at most

∑
i δi by

the end of the commitment phase there exist an i ∈ [k] where Si is not bound to a fixed wi. Thus
Spar has binding at least (1−

∑
i δi).

On the other hand, since Ssmp is forced to use the same message w in all of Ri’s, Ssmp gets
bound to a message w if for at least one i ∈ [k] Ri gets bound to a message w. Recall that
the latter happens whenever the inefficient modification of the receiver R′i defined in binding part
of Definition 2.15 rejects and by the binding of Λi this rejection happens with probability at least
1−δi. Therefore by the soundness amplification of parallel composition of IPCPs (Part 1 of Lemma
2.13), with probability 1 −

∏
i δi at least one of R′i’s reject in the execution of Ssmp in which case

the sender Ssmp gets committed to at most one possible message w.
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Hiding. We use a standard hybrid argument (which works the same for both Λpar and Λsmp). Fix
any two messages w1 = (w1

1, . . . , w
1
k), w

2 = (w2
1, . . . , w

2
k) and consider k + 1 experiments as follows.

In the i’th experiment for 0 ≤ i ≤ k, we use a parallel composition of Λ1, . . . ,Λk while for 0 ≤ j ≤ i
the committed message in Λj is w1

j and for i + 1 ≤ j ≤ k, the committed message in Λj is w2
j .

Fix any malicious receiver R̂par who asks at most u queries from its locking oracle σ. Let τi be the
random variable which consists of the transcript of the commitment phase in the i’th experiment.
If SD(τ0, τk) >

∑
i εi, then there should exist i ∈ [k] such that SD(τi−1, τi) > εi. Therefore R̂par can

distinguish between the experiments i− 1 and i with advantage εi. Now we claim that there exists
a malicious receiver R̂ that can break the εi-hiding of Λi by εi-distinguishing the two experiments
where in the first one w1

i and in the second one w2
i is used as the committed message in Λi. R̂ will

run R̂par while simulating the k − 1 other senders and oracles of R̂par as follows. For Λ0, . . . ,Λi−1

R̂ simulates their senders and locking oracles while w1
j is used as the committed string in Λj and

in k − i other games Λi+1, . . . ,Λk it simulates their senders and locking oracles while w2
j is used

as the committed string in Λj . Then it is easy to see that R̂ will εi-distinguish between the two
experiments because R̂con εi-distinguishes τi−1 from τi. But this contradicts the εi hiding of Λi.

Equivocability. Let τpar = (τ1, . . . , τk) be the transcript of the interaction of Rpar with (Spar, σpar)
where τi consists of the part of the transcript for Λi and let w = (w1, . . . , wk) be the message that
has a non-zero chance of being the private message conditioned on τpar being the transcript. To
sample a randomness (rP1 , rP2 , . . . , rPk

) consistent with τpar and w one has to sample rPi consistent
with (τi, wi) for all i ∈ [k] which is possible by the equivocability of Λi’s.

Therefore we can use Λpar to expand the message space at the cost of slight loss in hiding and
binding, while Λsmp can be used to amplify the soundness at the cost of slight loss in hiding.

3 Statistically Zero-Knowledge IPCP for NP

In this section we show how to construct a 2Ω(n)-secure constant-round SZK-IPCP for any language
L ∈ NP where both the prover and the PCP oracle in our construction can be implemented
efficiently given a witness w for x ∈ L. We also show how to achieve a 2Ω(n)-adaptively-secure
SZK-IPCP for any L ∈ NP at the cost of poly(n) round-complexity. More formally we prove the
following two theorems.

Theorem 3.1 (Constant-round SZK-IPCP for NP). For any language L ∈ NP there exists a 2-
round efficient public-coin SZK-IPCP Γ2R for L with security 2Ω(n). Moreover, the simulator of Γ2R

is straight-line and therefore by Lemma 2.13 for a small enough constant c, a 2cn-fold concurrent
composition of Γ2R remains (2Ω(n), 2−Ω(n))-SZK.

Theorem 3.2 (Adaptively-secure SZK-IPCP for NP). There exists a (poly(n)-round) efficient
SZK-IPCP Γadap for L with adaptive-security 2Ω(n).

The oracle is inherent for SZK. If we only want to achieve computational zero-knowledge,
we can remove the PCP oracle from the IPCP model and only the interaction would suffice to
achieve this goal (under the computational assumption that one-way functions exist [GMW91]).
On the other hand, if the domain of the PCP oracle π were only of size poly(n) (rather than
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super-polynomial), then a malicious polynomial-time verifier could read all of the information in
π and so the language L would be in the class SZK ⊂ AM ∩ co-AM which does not contain the
class NP unless the polynomial hierarchy collapses. This means that the existence of a oracle π
with a super-polynomial domain is inherent to achieve unconditional zero-knowledge for NP.

Intuition behind Theorem 3.1. Our main step to prove Theorems 3.1 is to construct an
interactive (ILS) (Definition 2.14), a primitive corresponding to commitment schemes in the IPCP
model. In Theorem 4.1 we present an ILS with optimal round complexity (i.e. one round). Then we
feed our ILS (as a commitment scheme) into the well-known construction of [GMW91] to achieve
zero-knowledge for NP with non-negligible soundness. A classical way to amplify the soundness of
proof systems (while keeping the round-complexity) in the standard model of interaction is to use
parallel composition. We use the fact (Part 1) that parallel composition of IPCP’s decreases the
soundness error exponentially. The latter result (i.e. Part 1 of Lemma 2.17) is interesting on its
own since the IPCP model lies in between the single-prover and the multi-prover models and it is
known [FRS88] that the parallel repetition does not amplify the soundness in a simple exponential
form (as one would wish). Secondly, we show that although the parallel composition might hurt
the zero-knowledge in general, by crucially using equivocability feature of our ILS (see Definition
2.14) one can prove that SZK is preserved under parallel composition.

Lemma 3.3. (Followed by Part 1 of Theorem 4.1) There exist an efficient ILS Λ = (S, σ,R) for
the message space {1, 2, 3} with security 2Ω(n) which is public-coin and equivocable. Moreover the
commitment phase of Λ has only one round of interaction.

To use the construction of [GMW91] we also need the following technical lemma.

Lemma 3.4 (Hiding of selective opening of ILS’s). Let Λ1 = (S1, σ1, R1), . . . ,Λk = (Sk, σk, Rk)
be ILS’s with the same round complexity and the same message space W and suppose that Λi is
(u, εi)-hiding for all i ∈ [k]. Also let D be an arbitrary (perhaps correlated) distribution over W k.
Now consider an arbitrary receiver R̂ who asks at most u oracle queries and interacts with the
parallel composition of (S1, σ1), . . . , (Sk, σk) in the following experiments Real or Simul. Then R̂
can not distinguish between Real and Simul with an advantage more than 3

∑
i εi. In other words

the statistical distance between the view of R̂ in the two experiments is at most 3
∑

i εi.

Experiment Real:

1. (w1, . . . , wk) is sampled according to the distribution D, (r1, . . . , rk) is sampled uniformly at
random and (Si, σi) receives (wi, ri) as its private message and randomness.

2. R̂ interacts with (S1, σ1), . . . , (Sk, σk) in parallel till the end of the commitment phases.

3. R̂ selects an arbitrary set B ⊆ [k] and receives (wi, ri) for all i ∈ B.

4. R̂ can continue asking up to u oracle queries (including the previous queries asked) from the
combined oracle σ = (σ1| . . . |σk).
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Experiment Simul:

1. (r′1, . . . , r
′
k) is sampled uniformly at random and (Si, σ′i) receives (0, r′i) as its private message

and randomness.

2. R̂ interacts with (S1, σ
′
1), . . . , (Sk, σ′k) in parallel till the end of the commitment phases.

3. R̂ selects a subset B ⊆ [k]. At this point (w1, . . . , wk) is sampled according to D, and ri is
sampled at random conditioned on being consistent with wi and the transcript of 〈Si, R̂σ

′
i〉.

Then R̂ receives (wi, ri) for all i ∈ B.

4. Now for all i ∈ B let σi be the oracle generated with (wi, ri) as its private message and
randomness, and for all i ∈ [k] \ B let σi be the same as σ′i. Let the combined oracle be
defined as σ = (σ1| . . . |σk). R̂ can continue asking up to u oracle queries (including the
previous queries) from the combined oracle σ.

Proof. We will use several hybrid arguments. We first define one more experiment:

Experiment Mixed:

1. (r′1, . . . , r
′
k) is sampled uniformly at random and (Si, σ′i) receives (0, r′i) as its private message

and randomness.

2. R̂ interacts with (S1, σ
′
1), . . . , (Sk, σ′k) in parallel till the end of the commitment phases.

3. R̂ selects a subset B ⊆ [k]. At this point (w1, . . . , wk) is sampled according to D, and ri is
sampled at random conditioned on being consistent with wi and the transcript of 〈Si, R̂σ

′
i〉.

Then R̂ receives (wi, ri) for all i ∈ B.

4. Now for all i ∈ k let σi be the oracle generated with (wi, ri) as its private message and
randomness, and let the combined oracle σ be defined as σ = (σ1| . . . |σk). R̂ can continue
asking up to u oracle queries (including the previous queries) from the combined oracle σ′.

Claim 3.5. For any receiver R̂ who asks at most u oracle queries, the statistical distance between
the view of R̂ in Real and Mixed is at most

∑
i εi.

Proof. Let τmixed and τreal be the transcript of the commitment phases in the experiments Mixed
and Real. As a mental experiment suppose:

1. In Mixed, the sampling (w1, . . . , wm)← Dk is done at the beginning (similar to Real).

2. In both Real and Mixed, the random seeds (r1, . . . , rk) are chosen after the commitment
phases are done, conditioned on the transcript of the commitment phases (τmixed or τreal) and
(w1, . . . , wm).

Now the only difference between Real and Mixed is in the statistical distance between (w1, . . . , wk, τmixed)
and (w1, . . . , wk, τreal) in the two experiments. The crucial point is that the distribution of ri’s
conditioned on (w1, . . . , wk, τ) are independent and thus the way they are sampled in Real and
Mixed (conditioned on (w1, . . . , wk, τ)) is the same. Now suppose the statistical distance between
(w1, . . . , wk, τmixed) and (w1, . . . , wk, τreal) is more than

∑
i εi. Then by an average argument we can
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fix the value of (w1, . . . , wk) and still keep the statistical distance to be more than
∑

i εi. Namely
for fixed values of (w1, . . . , wk), the statistical distance between τmixed and τreal is more than

∑
i εi.

Notice that the difference between Mixed and Real (after fixing (w1, . . . , wk)) is that τmixed is gen-
erated with (0, . . . , 0) as the private messages while τreal is generated with (w1, . . . , wk). But this
contradicts the hiding property of parallel composition of ILS’s (i.e. Part 2 of Lemma 2.17).

The following claim together with Claim 3.5 (and the triangle inequality over the statistical
distances) finishes the proof.

Claim 3.6. For any receiver R̂ who asks at most u oracle queries, the statistical distance between
the view of R̂ in Mixed and Simul is at most

∑
i 2εi.

Before proving Claim 3.6 consider the following two experiments.

Experiment Com0Dec0:

1. R̂ interacts with (Si, σi) in the commitment phase conditioned on 0 being the private message
of (Si, σi).

2. R̂ can continue asking up to u oracle queries.

Experiment Com0Decw:

1. R̂ interacts with (Si, σi) in the commitment phase conditioned on 0 being the private message
of (Si, σi).

2. A randomness of the sender rS is sampled conditioned on the view of R̂ and w being the
private message.

3. R̂ can continute asking up to u oracle queries, but the oracle answers will be based on (w, rS)
being the private message and the randomness of the oracle.

Claim 3.7. For any message w, any receiver R̂ who asks at most u oracle queries can distinguish
between the Com0Dec0 and Com0Decw by an advantage of at most 2εi.

Proof. Let the experiment ComwDecw be an experiment similar to Com0Decw where the transcript
of the commitment phase was generated conditioned on w being the private message. By the (u, εi)-
hiding of the ILS Λi the statistical distance between the view of R̂ in Com0Dec0 and ComwDecw
is at most εi. We can apply Lemma 2.2 (with X,Y , and Z being in order the view of R̂ in
Com0Dec0, ComwDecw, and Com0Decw, and the first part of each random variable being the view
of the commitment phase) to conclude that the statistical distance of view of R̂ in Com0Dec0 and
Com0Decw is at most 2εi.

Proof. (of Claim 3.6) Suppose R̂ can distinguish between Simul and Mixed with advantage more
than

∑
i εi. By an average argument we can get fix the sample (w1, . . . , wk) ← Dx and use it in

Simul and Mixed and keep the distinguishing advantage of R̂ more than
∑

i εi. Now we use a hybrid
argument. For 0 ≤ j ≤ k, define the j’th hybrid experiment as follows.
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Experiment Hybridj

1. (r′1, . . . , r
′
k) is sampled uniformly at random and (Si, σ′i) receives (0, r′i) as its private message

and randomness.

2. R̂ interacts with (S1, σ
′
1), . . . , (Sk, σ′k) in parallel till the end of the commitment phases.

3. R̂ selects a subset B ⊆ [k]. At this point (w1, . . . , wk) is sampled according to D, and ri is
sampled at random conditioned on being consistent with wi and the transcript of 〈Si, R̂σ

′
i〉.

Then R̂ receives (wi, ri) for all i ∈ B.

4. Now for all i ∈ B ∪ [j] let σi be the oracle generated with (wi, ri) as its private message and
randomness, and for all i ∈ [k] \ (B ∪ [j]) let σi be the same as σ′i. Let the combined oracle
be defined as σ = (σ1| . . . |σk). R̂ can continue asking up to u oracle queries (including the
previous queries) from the combined oracle σ.

Note that Hybrid0 = Simul and Hybridk = Mixed (with the mentioned difference that (w1, . . . , wk)
is fixed now). Therefore if R̂ can distinguish between Simul and Real with advantage more than∑

i 2εi, then there exists i ∈ [k] such that R̂ can distinguish between Hybridi−1 and Hybridi with
advantage more than 2εi. It is easy to see (similar to the proof of Part 2 of Lemma 2.17) that R̂
can be converted into another malicious receiver R̂i who asks at most u oracle queries and is able
to distinguish between Com0Dec0 and Com0Decwi with advantage more than 2εi. But the latter is
not possible because of Claim 3.7.

Therefore Lemma 3.4 follows from Claims 3.6 and 3.5 and the triangle inequality over the
statistical distance.4

Now we prove Theorem 3.1 using Lemma 3.3 and Lemma 3.4.

Proof. (of Theorem 3.1) Let L ∈ NP, and let x be an input to an IPCP for L. By using the
Cook-Levin reduction one can efficiently compute (from x) a graph G where x ∈ L iff G ∈ 3COL,
and moreover any witness for x ∈ L can be efficiently converted into a witness for G ∈ 3COL and
vice versa. So we would assume that the parties always will run the Goldreich-Levin reduction first
and then will work with a graph G as their input where G has n = |N | vertices and m = |M | edges.
By a padding argument we can always assume that n ≥ |x| and so any u(n)-secure IPCP for 3COL
will yield a u(n)-secure IPCP for L as well. Therefore without loss of generality will work with
L = 3COL directly.

We use the zero-knowledge construction of [GMW91] which in turn uses a commitment scheme.
For the needed commitment scheme we use the ILS Λ = (S, σ,R) of Lemma 3.3.

Construction 3.8 (Weakly-sound SZK-IPCP for 3COL). Let w : [n] → {1, 2, 3} be a proper 3-
coloring for G where w(i) 6= w(j) if i 6= j. Let Λ = (S, σ,R) be the ILS of Lemma 3.3 and let w be
the secret input given to (S, σ). The IPCP Γ = (P, π, V ) is as follows.

4Note that the reductions in various hybrid arguments in the proof of Lemma 3.4 are not efficient, but they keep
the number of queries asked by R̂ bounded (which was sufficient). The reductions can be done efficiently if Λi’s are
equivocable.
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1. The prover P chooses s← S3 at random where S3 is the set of all permutations over the set
{1, 2, 3}. P uses s to “randomize” the coloring w to get a new 3-coloring of G as c(i) = s(w(i))
for all i ∈ N . Note that c is also a proper 3-coloring of G. Moreover for any edge (i, j) ∈M
it holds that (c(i), c(j)) is uniformly distributed over {1, 2, 3}2 conditioned on c(i) 6= c(j).

2. The prover P and the verifier V will engage in an n-fold parallel composition of the com-
mitment phase of the ILS Λ where c(i) and ri are, in order, the committed message and the
private randomness used by (Si, σi) (in the i’th instance of Λ). The interaction of this step
stops right before the decommitment phases start.

3. The verifier V chooses an edge (i, j)←M at random and sends (i, j) to the prover P .

4. The prover decommits the i’th and j’th instances of Λ by sending (c(i), ri) and (c(j), rj) to
the verifier V .

5. The verifier V verifies (c(i), ri), (c(j), rj) as decommitments of the i’th and j’th and rejects if
either of them fail or if c(i) = c(j).

Claim 3.9. The IPCP Γ = (P, π, V ) of the Construction 3.8 has the following properties.

1. Completeness: If G is a 3-colorable graph, then Pr[〈P, V π〉(G) = 1] = 1.

2. Soundness: Γ is 1
2m -sound. Namely, if G is not 3-colorable, then Pr[〈P, V π〉(G) = 0] ≥ 1

2m .

3. SZK: Γ is (2Ω(n), 2−Ω(n))-SZK with a straight-line simulator.

4. Efficiency: Γ can be implemented efficiently (when (P, π) are given a proper coloring w of
G as their private input).

5. Round-complexity: If the commitment phase of Λ has t rounds, then Γ has round com-
plexity t+ 1.

6. Public-coin: Γ is public-coin if Λ is public-coin.

Proof. .

Completeness. The completeness follows from the completeness of Λ and the fact that w is a
proper coloring.

Soundness. Suppose G is not 3-colorable. Since Γ runs n instances of Λ in parallel, by Part 1
of Lemma 2.17, with probability at least 1 − nδ, by the end of the commitment phases, for each
i ∈ [n] there is at most one possible c(i) that the prover can decommit to (together with some
randomness ri) successfully. In the following we assume that such event has happened. Now for
each i ∈ [n] let c(i) be the possible color that the prover can decommit to and let c(i) = ∗ if such
color does not exist. Since G is not 3-colorable, with probability at least 1/m the verifier chooses
an edge (i, j) such that either c(i) = ∗, or c(j) = ∗, or c(i) 6= c(j). But in all these cases the verifier
will reject. Therefore the verifier will reject at some point during he interaction with probability at
least (1− δn) · 1

m . Recall that Λ had hiding 1− δ ≥ 1− 2Ω(n), which means that Γ has soundness
(1− nδ) · 1

m ≥
1−n2−Ω(n)

m ≥ 1
2m .
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SZK. Suppose V̂ is a malicious verifier which asks up to u queries from π where Λ (of Lemma
3.3) is (u, ε)-hiding. The simulator Sim starts by plugging in a random seed for V̂ and interacting
with V̂ similar to the way that (P, π) would do. But the problem is that Sim is not given the
coloring w and cannot get the randomized proper coloring c. Instead Sim does the following.

1. Sim uses the trivial (and most probably improper) coloring c(i) = 0 for all i ∈ N and interacts
with V̂ .

2. After receiving the edge (i, j) ∈ M from V̂ , the simulator chooses (c(i), c(j)) ← {1, 2, 3}2
conditioned on c(i) 6= c(j) and chooses r′i (resp. r′j) at random conditioned on being consistent
with c(i) (resp. c(j)) and the transcript of 〈Si, V̂ σi〉 (resp. 〈Sj , V̂ σj 〉). The latter is possible
because of the equivocability of Λ.

3. Sim answers the remaining oracle queries of V̂ , but it pretends that (c(i), r′i) and (c(j), r′j) are
the private message and randomness used in order by σi and σj . (For queries to other oracles
πt where t 6∈ {i, j}, Sim continues using (0, rt) as the message and the randomness used for
the oracle πt.)

When one is interacting with the honest prover P and the honest oracle π, for any fixed edge
(i, j) ∈ M the distribution of the colors of its vertices (c(i), c(j)) is uniformly distributed over
{1, 2, 3}2 conditioned on c(i) 6= c(j). Therefore by Lemma 3.4, the simulator Sim generates a
view for V̂ which is 3

∑
i∈[n] ε = (3nε)-close to the view of V̂ when interacting with the honest

prover and the oracle (P, π). Since Λ is (u, ε) = (2Ω(n), 2−Ω(n))-hiding, it follows that Γ has SZK
(2Ω(n), 3n2−Ω(n)) = (2Ω(n), 2−Ω(n)) with a straight-line simulator.

The efficiency, round-complexity, and public-coin properties are immediate.

Finally let Γ2R be an mn-fold parallel composition of Γ. By Part 1 of Lemma 2.13, Γ2R

has soundness 1 − (1 − 1/2m)mn = 1 − 2Ω(n). Also by Part 3 of Lemma 2.13 Γ2R has SZK
(2Ω(n),mn2−Ω(n)) = (2Ω(n), 2−Ω(n)) with a straight-line simulator. Clearly Γ2R remains complete,
efficient, and 2-round and this finishes the proof of Theorem 3.1.

Proof. (of Theorem 3.2) To prove Theorem 3.2 it is enough to get an SZK-IPCP with non-negligible
adaptive soundness. Then by Part 2 of Lemma 2.13 we can use the sequential composition to amplify
the adaptive-soundness.

Note that if the verifier asks only one query from the oracle, then there is no difference between
soundness and adaptive-soundness.

A construction of [BGKW88] takes any multi-prover interactive proof system and compiles it
into a 2-prover system with non-negligible soundness where the verifier asks only one query from
the oracle. The construction of [BGKW88] is as follows. The verifier sends its randomness rV to
the first prover and gets a full simulation of its interaction with the original multi-prover system.
Then, in order to make sure that the first prover did not lie, one of the query/answer pairs claimed
by the first prover is chosen at random and is verified by the second prover. If the answers were
different the verifier rejects. It is easy to see that if the first prover does not simulate the game
honestly as a simulation of the multi-prover case, then it will be caught with probability roughly
1/v where v is the total number of queries of the interaction being simulated. (We refer the reader
to [BGKW88] for more details).
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As a first try, we use the construction of [BGKW88] to compile our SZK-IPCP of Theorem
3.1 into one with non-negligible adaptive-soundness and only one oracle query. Namely, we starts
ask the verifier to send its randomness to the prover who simulates the whole execution of the
original system. Then we choose one of the query/answer pairs claimed by the prover and verify its
correctness with the oracle (who is supposed to know the answer to such queries). Unfortunately,
the problem with this construction is that the verifier is also able to “reset” the original prover
through the new oracle. That is because the new oracle is supposed to know the answer to all the
queries to the original prover and there is no restriction on which queries the verifier will ask from
the oracle. Therefore we loose the SZK property.

To keep the SZK property, as a second try, we change the construction above as follows. The
verifier will choose only one of the oracle queries, simulated by the new prover, and verifies that
query with the new oracle. Now if the prover lies about any of the oracle-type simulated queries,
it still will be caught by the verifier with non-negligible probability. Unfortunately, this time we
might loose the soundness. The reason is that if the soundness of the original system relies on
the oracle queries being hidden from the prover, since in the new simulation we are revealing the
oracle queries of the original system to the prover, the prover might honestly simulate the oracle
queries but use this knowledge to lie about the simulated queries of the original prover. But the
good news is that if the original construction of SZK-IPCP was public-coin, then the soundness is
still guaranteed even if the prover gets to see the oracle queries, and so in this case we do not loose
the soundness! More formally we use the following construction.

Construction 3.10 (From soundness to weak adaptive-soundness). Let Γ = (P, π, V ) be an IPCP.
We construct new IPCP Γ′ = (P ′, π′, V ′) as follows.

• PCP oracle: The (honest) oracle π′ will be the same as π.

• The interaction of P ′ and V ′:

1. V ′ chooses a randomness rV for V and interacts with P ′ similar to the interaction of V
and P . The main difference is that any time that V needs to ask a query from π, V ′

will ask this query from the prover P ′ instead.

2. At this time V ′ has a full description of a possible interaction between V π and P and
rejects if V would reject in this interaction.

3. Suppose q1, . . . , qv are the oracle queries that were asked from the prover P ′ and let ai
be the answer claimed by P ′ for the oracle query qi. If V ′ didn’t reject in the previous
step, it will chooses a random i ∈ [v] and queries qi from the oracle π′. Let a′i = π′(qi)
be the answer. V ′ rejects if ai 6= a′i.

Claim 3.11 (Properties of Construction 3.10). Let Γ = (P, π, V ) be an (efficient) public-coin IPCP
for the language L which is (1 − δ)-sound, (u, ε)-SZK and public-coin where the honest verifier V
asks at most v oracle queries. When Γ is used in Construction 3.10 the result is an (efficient) IPCP
Γ′ = (P ′, π′, V ′) for the language L which is (u− v, ε)-SZK, and is (1− δ)/v-adaptively-sound.

Proof. .
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SZK. Any simulator Sim for Γ with parameters (u, ε) can be used to get a simulator Sim′ for Γ′

with parameters (u− v, ε). The reason is that the view of any malicious verifier V̂ ′ in Γ′ who asks
at most u − v can be simulated by another malicious verifier V̂ in Γ who uses V̂ ′ as a black box
(and in a straight-line manner). The verifier V̂ runs V̂ ′ and whenever V̂ ′ asks an oracle query from
the prover P ′, V̂ also asks this query from the oracle π. Thus any (straight-line) simulator for V̂
can be used to simulate the view of V̂ ′ with the same statistical distance ε.

Adaptive soundness. Since the verifier asks only one query from π′, it does not matter whether
π′ is stateful or not. More formally, for any potentially stateful π′ we define a (stateless) oracle π′′

which given the query x answers according to π′ when π′ is asked only the query x. Note that from
the point of view of V ′ there is no difference between π′ and π′′, so we might as well assume that
V ′ asks its query from the stateless oracle π′′.

Let Rej be the event that V ′ rejects. By the soundness of Γ as a public-coin IPCP if P ′ answers
all of q1, . . . , qv honestly according to π′′, then it would hold that Pr[Rej] ≥ 1−δ. It is crucial that Γ
is public-coin, because in the interaction of V ′ and P ′, P ′ gets to know the oracle queries of V and
the soundness should hold even in this case. But a malicious prover P̂ ′ can change Pr[Rej] by lying
about the answer to some of qi’s. Let Lie be the event that there exists i ∈ [v] such that ai 6= π′′(qi),
and let NoLie be the complement event that ai = π′′(qi) for all i ∈ [v]. By the (1− δ)-soundness of
the public-coin IPCP Γ it still holds that:

Pr[Rej ∧ NoLie] ≥ (1− δ)− Pr[Lie]. (3.1)

On the other hand if Lie happens then P ′ will be caught with probability at least 1/v, and so

Pr[Rej | Lie] ≥ 1/v. (3.2)

Therefore we conclude that

Pr[Rej] = Pr[Rej ∧ NoLie] + Pr[Rej ∧ Lie]
≥ max(0, 1− δ − Pr[Lie]) + Pr[Lie] · Pr[Rej | Lie] by Inequality 3.1

≥ max(0, 1− δ − Pr[Lie]) + Pr[Lie] · 1
v

by Inequality 3.2

≥ (1− δ)/v. Achieved by Pr[Lie] = 1− δ

We use Construction 3.10 over the IPCP Γ = (P, π, V ) of Theorem 3.1 to get a new IPCP
Γ′ = (P ′, π′, V ′). Let v = poly(n) be the number of oracle queries of V in Γ. Since Γ is public-
coin and is 2Ω(n)-secure, therefore Γ′ will have adaptive-soundness 1/(2mv) = 1/poly(n) and SZK
(2Ω(n) − v, 2−Ω(n)) = (2Ω(n), 2−Ω(n)).

Finally let Γadap be a mvn-fold sequential composition of Γ′. By Part 2 of Lemma 2.13, Γadap

has adaptive-soundness 1− (1− 1/(2mv))mvn = 1− 2Ω(n). Also by Part 3 of Lemma 2.13 Γadap has
SZK (2Ω(n),mvn2−Ω(n)) = (2Ω(n), 2−Ω(n)) and this finishes the proof of Theorem 3.2.
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4 Interactive Locking Schemes

In this section we study ILS’s and will construct an ILS with optimal round complexity.

Theorem 4.1. (A round-optimal ILS) Let `(n) = poly(n), then

1. There exist an efficient ILS Λ = (S, σ,R) for the message space {0, 1}` with security 2Ω(n)

which has a commitment phase of only one round and is public-coin.

2. Any ILS with a noninteractive commitment phase needs an inefficient oracle σ and thus Λ
has optimal round-complexity (as an efficient ILS).

First, in Section 4.1 we present a general construction for ILS’s from any interactive hashing
scheme (IHS) (see Definition 4.2) where the round-complexity of the used IHS equals the round-
complexity of the commitment phase of the constructed ILS. Using known constructions for IHS we
get an ILS with a 2-round commitment phase. We show that this is the best one can get through
this approach by showing that any IHS with the parameters needed for our construction requires
at least 2 rounds (see Proposition 4.5).

Then in Section 4.2 we present a direct construction for ILS with only one round of interaction in
the commitment phase. Both constructions of Sections 4.1 and 4.2 are 2Ω(n)-secure and public-coin.
Thus the 1-round construction of Section 4.2 proves Part 1 of Theorem 4.1.

Finally in Section 4.3 we will show that at least one round of interaction is needed in the
commitment phase of any efficient ILS (proving Part 2 of Theorem 4.1).

4.1 ILS from IHS

Interactive hashing schemes (IHS — Definition 4.2) and their variants have been of great use in
designing cryptographic protocols. Although the core central properties needed for IHS’s in all these
applications is of an information theoretic flavor, in the applications of IHS’s in the computational
regime [OVY93a, OVY93b, HHK+05, HR07], compared to the applications in the information
theoretic regime [CCM98, CCM98, DHRS04]) some extra properties are required for the IHS used.
Here we use a minimal definition whose properties hold in all existing forms of IHS in the literature
and show that the existence of any IHS according to this definition implies the existence of ILS.

Definition 4.2 (Interactive hashing). An interactive hashing scheme (IHS) Ψ = (S,R) is a two
party protocol between a sender S and a receiver R where both are given 1n as the security
parameter and S is also given w ∈ M as the private message. By the end of the protocol the
transcript of the protocol determines two outputs {w0 6= w1} ⊆ {0, 1}n for which the following
properties hold.

• Completeness: If S and R are honest, then w ∈ {w0, w1}.

• Binding: The protocol is ρ-binding, if for every fixed set T ⊂ W of size |T | ≤ ρ · |W | and
any malicious sender Ŝ the probability that both of w0 and w1 lie in T is at most 1/2; namely
Pr〈Ŝ,R〉=(w0,w1)

[{w0, w1} ⊂ T ] ≤ 1/2.

• Hiding: If the sender S is honest, then for any transcript τ of the protocol which determines
the outputs (w0, w1) it holds that Prw←{w0,w1}[w = w0 | τ ] = Prw←{w0,w1}[w = w1 | τ ] = 1/2.
Therefore if, w ←W is chosen uniformly at random, w0 and w1 will have the same chance of
being equal to w.

26



We call Ψ efficient if both S and R are efficient and public-coin if the messages of the receiver R
only consist of her public coin tosses.

It is easy to see that if R simply sends a 2-to-1 pairwise-independent hash function h : {0, 1}n →
{0, 1}n−1 to S and S sends back h(w), it gives a ρ-binding IHS for ρ ≈ 2−n/2. But, as we will see
in Lemma 4.3 for our construction of ILS from IHS (Lemma 4.3) we need IHS’s with non-negligible
binding ρ = Ω(1/poly(n)).

Lemma 4.3 (ILS from IHS). Let Ψ = (SΨ, RΨ) be a k-round IHS with binding ρ over the message
space {0, 1}n with a deterministic sender SΨ. Then there exists a bit-ILS Λ = (S, σ,R) with a k-
round commitment phase which is 1/2-binding and (2n/2, 2−n/2)-hiding. Moreover if Ψ is efficient,
then (S, σ) are efficient and the receiver R runs in time poly(n, 1/ρ) (and so if in addition ρ =
1/poly(n), then Λ is efficient as well).

[OVY93a] presented an IHS with binding ρ = Ω(1) at the cost of poly(n) rounds of interaction.
[DHRS04] showed how to achieve a constant-round IHS with 1/poly(n) binding. In all the known
constructions of IHS the sender is deterministic, and in our construction of ILS from IHS (Lemma
4.3) we use this property. The determinism of the sender is not crucial to us and if the sender is
randomized, then we only need the following sampling property to hold: Given any transcript τ of
the protocol determining (w0, w1) and any i ∈ {0, 1} one can efficiently sample ri from the sender’s
space of randomness according to ri ← (rS | τ, w = wi).

By using any known k-round efficient IHS with 1/poly(n)-hiding and Lemma 4.3, we get an
efficient ILS Λ which is 1/2-binding and (2Ω(n), 2−Ω(n))-hiding. Now Part 1 of Lemma 2.17 yields
that an n-fold parallel composition of Λ is 2Ω(n)-secure and finally an `-fold same-message parallel
composition expands the message space to {0, 1}` while we keep the 2Ω(n)-security. Therefore by
using the 2-round IHS scheme of [DHRS04] and Lemma 4.3 we derive Part 1 of Theorem 4.1 (but
still without the optimal round-complexity).

Intuition. Our approach in the proof of Lemma 4.3 is to use the well-known reduction from
statistically hiding bit commitments to IHS in the computational setting [NOVY98] and its black-
box proof of security. Roughly speaking the idea of [NOVY98] is to run the IHS over the message
y ∈ {0, 1}n where y = f(x) and f is a permutation. Now if f is a one-way permutation the fraction
of points y which the malicious sender Ŝ is able to invert is a negligible ε = neg(n) fraction of
{0, 1}n. Therefore if the ILS is ρ-binding for non-negligible ρ (and in particular ε < ρ) with a
noticeable probability, by the end of the IHS with outputs {y0, y1}, there is at most one y where
Ŝ can invert (i.e., present x such that y = f(x)) and claim that y was his private message. So if at
the last step of the commitment phase Ŝ sends a bit d = b⊕ c where b is his bit-message and y is
such that y = yc, then she gets committed to only one possible value for b for which she can find a
consistent c.5

But here we are interested in unconditionally secure protocols and we can not rely on the
existence of one-way permutations or any other computational assumption. The idea is to use the
locking oracle σ to hold a random (non-zero) point function σ(x) = y where the sender knows the
image y and the preimage x and thus can “invert” y to x. By using the IHS over the image y,
the sender gets committed to a unique y (with probability at least 1/2) assuming that there are

5The argument needs to be formalized through an efficient reduction and we refer the reader to the rather
complicated full proof of [NOVY98].
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fewer than ρ · 2n many “invertible” points in the set σ({0, 1}n). But the receiver can guarantee
that the latter is the case by picking 100/ρ random samples x′ ← {0, 1}n (conditioned on x 6= x′)
and verifying that σ(x′) = 0.

Proof. (of Lemma 4.3) We first describe the bit-ILS Λ = (S, σ,R).

Construction 4.4 (Bit-ILS from IHS). Let b ∈ {0, 1} be the private message hold by (S, σ). We
will use the IHS Ψ with the properties described in Lemma 4.3 over the message space {0, 1}n with
binding ρ.

The commitment phase of Λ:

1. The common randomness rR of (R, σ) will be (x, y) ← {0, 1}n × {0, 1}n where y 6= 0. The
locking oracle σ will contain a point function: σ(x) = y and σ(x′) = 0 for x′ 6= x.

2. S and R engage in the IHS Ψ where the sender S uses y as the private message of SΨ.

3. Let b be the private bit given to S, and let (y0 < y1) be the output of the protocol Ψ and let
c be such that y = yc. As the last message of the commitment phase the sender S sends the
bit d = b⊕ c to the receiver R. Note that this does not require an extra round of interaction
since d can be concatenated to the last message of the sender.

The decommitment phase of Λ:

1. S sends b and (x, y) to R.

2. R verifies that σ(x) = y and y = yd⊕b (and rejects otherwise).

3. For i ∈ [n/ρ] the receiver R samples x′i ← {0, 1}n conditioned on x′i 6= x at random and
verifies that σ(x′i) = 0 holds for all i ∈ [n/ρ] (and rejects otherwise).

Now we prove the properties of the ILS Λ of Construction 4.4.

Completeness is immediate.

Binding. Let T = {σ(x) | x ∈ {0, 1}n} \ {0} and T−1 = {x | σ(x) 6= 0} be the set of non-zero
points in the oracle σ. There are two cases: either T−1 has size |T−1| ≥ ρ · 2n or |T−1| < ρ · 2n.
If the first case |T−1| ≥ ρ · 2n holds, then with probability at least 1 − (1 − ρ)n/ρ > 1 − 2n one of
the receiver’s samples {x′i} will be sampled from T−1 and then the receiver R rejects. (The way we
described the protocol the random samples x′i’s are chosen in the decommitment phase, but they
are part of the randomness rR of the receiver and are chosen in the beginning of the commitment
phase.)

On the other hand, if the second case |T−1| < ρ · 2n holds, it implies that the size of |T | ≤
|T−1| < ρ · 2n is small as well. Now by the binding property of the IHS Ψ, with probability at least
1/2 one of {y0, y1} lies out of T in which case there is only one way for the sender S to decommit
to a bit b consistent with y0, y1 and d. Therefore the 1/2-binding holds in either of the cases.
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Hiding. If a malicious receiver R̂ asks up to 2n/2 queries from the oracle σ, they will be all
answered zero with probability at least 1 − 2−n/2 by the uniformity of x ← {0, 1}n. But in that
case the oracle queries of R̂ do not reveal any information about y and the hiding of the ILS Γ
follows from the hiding of the IHS Ψ.

Equivocability. Let τ be the transcript of any malicious receiver R̂ by the end of the commitment
phase. Given (b, τ) the sampler algorithm Sam does the following. Let σ(x′1) = y′1, . . . , σ(x′t) = y′t
be the oracle queries asked by R̂ from σ appeared in the transcript τ and let (y0, y1) be the output
of the executed IHS. If there exist i ∈ [t] such that y′t 6= 0, then it means that R̂ has found the
committed bit b = d⊕ c where c is such that y′i = yc. In this case the sampler Sam simply outputs
(x′i, y

′
i). On the other hand if y′i = 0 for all i ∈ [t], then the sampler chooses y = yc where c = b⊕ d

and chooses x← {0, 1}n \ {x′1, . . . , x′t} and outputs (x, y) (pretending that σ(x) = y).

By using the IHS of [DHRS04] (which has the fewest number of rounds among known IHS’s) we
get a 2-round ILS. The following proposition shows that the Construction 4.4 of ILS’s from IHS’s
is not able to achieve efficient ILS’s with one round (in the commitment phase).

Proposition 4.5 (Nontrivial IHS’s need two rounds). Any IHS Ψ with at most 3 messages ex-
changed between the sender and the receiver has binding at most ρ = 100/

√
|W |. Therefore for

|W | = 2n, any IHS Ψ with non-negligible binding ρ needs at least two rounds of interaction.

Proof. For starters we assume that Ψ has only one round (i.e. two messages) where the receiver
sends its message first. Later we will extend the result to 3-message protocols. Suppose the first
message sent from the receiver is q and is followed by an answer a from the sender. In the following
discussion we fix a query q. Now any answer a corresponds to two elements {wa1 , wa2} ⊂ W which
determines an edge in a graph Gq with the vertex set W . Each edge a has a probability of being
used as the sender’s message. By duplicating the edges we can change Gq into a multi-graph such
that the distribution of the message of the sender corresponds to selecting a random edge from
Gq. The hiding property implies that any two connected vertices x and y have the same degree
d(x) = d(y). Therefore each connected component of Gq is a regular graph. Now we show that
such graphs have a relatively large matching.

Lemma 4.6 (Large matchings in regular graphs). Let G be any graph with v vertices such that
the vertices have degree at least one and each connected component of G is regular. Then G has a
matching of size at least v/4.

Proof. By the Vising theorem each connected component of G can be properly colored with ∆ + 1
colors where ∆ is the degree of the vertices of that component. Since each color forms a matching,
therefore each component of G with u vertices has a matching of size at least u∆

2(∆+1) ≥ u/4.
Therefore G has a matching of size at least v/2.

Let M be the matching of size |W |/4 in G guaranteed by Lemma 4.6. The sender samples
a random set T ⊂ W by choosing each w ∈ W with probability 10/

√
|W |. Each edge of the

matching M gets covered by T with probability at least 100/|W |. Therefore with probability at
least 1− (1− 100/|W |)|W |/4 > 1− 2−25 > 99/10 at least on of the edges in M gets covered.

Now we let q, the message of the receiver, also be chosen according to its distribution. For each
such q, when we construct the graph Gq, the random set T covers one of the edges of Gq with
probability at least 99/100. Therefore, with probability at least 9/10 over the choice of T , the set
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T has the property that: with probability at least 9/10 over the choice of q, at least one of the
edges of Gq is covered by T . We call such T a good set.

On the other hand by Markov inequality with probability at least 9/10, the size of T is bounded
by 100

√
|W |. Therefore by a union bound with probability at least 8/10, T is both a good set and

also of size at most 100
√
|W |. This set T can be used by the sender to break the binding of Ψ,

because with probability at least 9/10 over the first message q of the receiver, the sender is able to
send a message a (corresponding to the edge covered by T ) which determines two elements in the
set T as the output of the protocol.

Now we study 3-message protocols. If we add one more message q1 from the receiver to to the
sender (in addition to the the 2-messages in the protocols studied above), the last message of the
receiver does not restrict the sender’s cheating power, because the set of messages that the sender
can claim to be his message does not depend on the last message of the sender.

Now suppose the protocol has three messages where the sender starts the interaction. In this
case, the first message of the sender a0 might decrease the space of possible values for w which are
consistent with a0. Now the sender fixes a value a0 for his first message. Let W ′ be the set of
values for w which are consistent with a0. By using the same attack above (for the protocols which
start with a0), the sender can still find a set T of size at most 100

√
|W ′| < 100

√
|W | to break the

binding of Ψ.

4.2 A 1-round ILS

Theorem 4.7 (A 1-round ILS). There exists an efficient bit-ILS Λ1R which is 2n/10-secure and has
only one round of interaction in the commitment phase.

Before proving Theorem 4.7 we need to develop some basis tools.

Lemma 4.8. For any m ∈ N, there is a set M of m × m Boolean matrices such that: (1)
0m×m ∈ M , and all other M ∈ M are full rank, (2) |M| = 2m, and (3) for any nonzero (fixed)
x ∈ {0, 1}m, xM is uniformly distributed over {0, 1}m if we choose M ∈M at random.

Proof. Let a ∈ GF (2n). If a 6= 0, then the function fa(x) = ax is a permutation over GF (2m).
The multiplication is a linear operation in the field, therefore we can think of Ma as the matrix
representation of the mapping fa which will have full rank if a 6= 0. Moreover if x 6= 0, then ax is
uniformly distributed for a random a. So we can take M = {Ma | a ∈ GF (2m)}.

Thus we also get the following lemma, whose proof is immediate.

Lemma 4.9. For n > m let A be the family of n × m Boolean matrices as follows. To get a
uniform member of A, choose the first n−m rows all at random, and take the last m rows to be an
independently chosen random member of M from Lemma 4.8. Then for any 0 6= x ∈ {0, 1}n and
y ∈ {0, 1}m, it holds that PrA←A[xA = y] = 2−m.

Proof. (of Theorem 4.7) We use the following construction for the ILS Λ1R.

Construction 4.10 (A 1-round ILS). Suppose b ∈ {0, 1} is the private message given to sender
and the oracle (S, σ), and suppose R is the receiver. Let m = 3n/4. Below we associate {0, 1}n
with the integers [0, 2n) and all additions and subtractions below are modulo 2n.
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The commitment phase of Λ1R:

1. Sender S chooses a← {0, 1}n at random. Let fb be the function: fb(x) = 1 iff a ≤ x < a+2m,
and let f1−b be the zero function over {0, 1}n. The locking oracle will be the combination of
the two functions σ = (f0|f1) (indexed by the first bit of the query to σ).

2. Receiver R samples A← A from the family of matrices of Lemma 4.9 conditioned on the last
m rows of A being independent6 and sends A to S.

3. Sender S checks that the last m rows of A are independent, and if so he sends h = aA to the
receiver R.

The decommitment phase of Λ1R:

1. Sender S sends (b, a) to the receiver R.

2. Receiver R does the following checks and rejects if any of them does not hold.

(a) Check that aA = h.

(b) Check that f1−b(a) = 0, and fb(a) = 1.

(c) For each i ∈ [0,m], sample 10n random points from [a, a+ 2i) and check that fb(x) = 1
for all of them, and also sample 10n random points from (a − 2i, a − 1] and check that
fb(x) = 0 for all of them

Now we study the properties of the ILS Λ1R.

Completeness is immediate.

Binding. As a mental experiment we pretend that the randomness used during the decommitment
phase by R is chosen in the decommitment phase (rather than in the beginning of the commitment
phase).

For a fixed locking oracle σ, Let X0 (resp. X1) be the set of possible values of a that sender
S can send to the receiver R as the decommitment of b = 0 (resp. b = 1) and get accepted in the
decommitment phase with probability at least 2−2n. We prove that by the end of the commitment
phase, with probability at least 1 − 2−n/8, it holds that |X0| = 0 or |X1| = 0 which means that
the sender has only one way to decommit the value b and get accepted with probability more than
2−2n. But now if we choose the receiver’s randomness in the commitment phase, since there are at
most 2n+1 possible values for (b, a), it follows by a simple average argument that with probability
at least 1 − 22n−n−1 over the commitment phase, the prover gets committed to only one possible
value for (b, a) which he can use to pass the decommitment phase successfully.

Claim 4.11. X0 ∩X1 = ∅.

Proof. If a ∈ X0 ∩X1. Then when a is used as the decommitment of 0, in Step 2b of the decom-
mitment phase the receiver R checks that f0(a) = 1, f1(a) = 0. On the other hand in the case of
decommitting to 1, receiver R checks that fb(a) = 0, f1−b(a) = 1, but they can’t both hold at the
same time.

6Note that the last rows of A are independent with probability 1− 2−m = 1− 2−n.
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Claim 4.12. It holds that |X0| ≤ 2n−m and |X1| ≤ 2n−m.

Proof. We show that if {a, a′} ⊂ X0 then |a − a′| ≥ 2m (and this would show that X0 ≤ 2n/2m).
Assume on the contrary that a′ < a and a−a′ < 2m. Let i ∈ [1,m] be such that 2i−1 ≤ a−a′ < 2i.
Then by the pigeonhole principle ether at least half of σ([a′, a]) are zero or at least half of the values
σ([a′, a]) are one. Without loss of generality let assume that at least half of σ([a′, a]) is zero. In this
case at least 1/4 of the values σ([[a′, a′ + 2i)]) are zero. But then by Step 2c of the decommitment
phase (0, a′) will be accepted with probability at most (3/4)10n < 2−2n, and therefore a′ 6∈ X0

which is a contradiction.

Claim 4.13. With probability at least 1 − 2Ω(n) over the choice of A, it holds that |X0| = 0 or
|X1| = 0.

Proof. Fix any pair a0 ∈ X0 and a1 ∈ X1, we know that a0 6= a1. Therefore, PrA[a0A = a1A] =
PrA[(a0 − a1)A = 0] = 2−m. Claim 4.12 yields that there are at most 2n−m2n−m such pairs, so by
using a union bound, with probability at least 1− 2−m22n−2m = 1− 22n−3m over the choice of A, it
holds that X0A∩X1A = ∅ which implies that if the sender sends any hash value h, the consistency
check of Step 2a of the decommitment phase either makes |X0| = 0 or |X1| = 0.

As we said before Claim 4.13 implies that with probability 1− poly(n) · 22n−3m = 1− poly(n) ·
2−n/4 ≥ 1− 2−n/8 over the interaction in the commitment phase the sender gets bound to a fixed
b ∈ {0, 1} to which he can decommit successfully.

Hiding. Suppose receiver R can ask at most u ≤ 2n/8 queries from the locking oracle σ. We
claim that before sending the matrix A, all of receiver R’s queries to σ are answered zero with
probability at least 1 − 2−n/4. To see why, think of Z2n as being divided into 2n−m = 2n/4 equal
intervals such that a is the beginning of one of them. Since receiver R asks up to 2n/8 queries,
before sending the matrix Z, he will ask a query from the interval beginning with a with probability
at most 2n/8/2n/4 = 2−n/8. Therefore (up to 2−n/8 statistical distance in the experiment) we can
assume that the matrix A is chosen by receiver R independently of a.

After receiving h, the information that the receiver R knows about a is that it satisfies the
equation aA = h. If we choose and fix the first n −m bits of (a potential) a, then the remaining
bits are determined uniquely because the last m rows of A are full rank. It means that for every
y ∈ [0, 2n−m) there is a unique solution for a in the interval [y2m, y2m + 2m), and they are all
equally probable to be the true answer from the receiver’s point of view.

Now again we claim that (although there are 2m nonzero points in fb) all the queries that the
receiver R asks from fb are answered 0 with probability at least 1−2−n/8. Let Z = {z | zA = h} be
the set of possible values for a. For z ∈ Z, let I(z) = [z, z+2m). We claim that no x ∈ {0, 1}n can be
in I(z) for three different z’s from Z. To see why, let z1 < z2 < z3 and that x ∈ I(z1)∩I(z2)∩I(z3).
But now the interval [y2m, y2m + 2m), containing z2 separates z1 and z3, and so z3 − z1 > 2m.
Therefore I(z1) ∩ I(z3) = ∅ which is a contradiction. So, if the receiver R asks u queries from
fb, he can ask queries from I(z)’s for at most 2u different z’s (out of 2n−m many of them). As a
mental experiment assume that a is chosen from Z after the receiver R asked his queries, it holds
that I(a) will be an interval that the receiver R never asked any query from with probability at
least 1 − u/2n−m ≥ 1 − ·2−n/8. Therefore with probability at least 1 − 2−n/9 all of receiver R’s
queries during the commitment phase will be answered zero. But putting the oracle queries aside,
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the hash value h does not carry any information about the bit-message b and therefore the scheme
is (1− 2n/8)-hiding.

Equivocability. Let τ be the view of an arbitrary receiver R̂ after the commitment phase. Let
(A, h) be the matrix sent by R̂ and the hash value received from S, and let (x1, y1), . . . , (xt, yt) be
the oracle query/answer pairs asked from fb and described in τ (where b is the input given to the
sampler algorithm Sam). For each xi let Zi = {z | yi ∈ I(z) ∧ zA = h} be the set of possible values
for a which yi falls into I(z), and recall that Z = {z | zA = h}. (As we said before, since the last
m rows of A are independent, |Zi| ≤ 2 for all i.) Note that yi = 0 if and only if a 6∈ Zi. Therefore
the set of possible values for a is W = Z ∩yi 6=0 Zi \ ∪yi=0Zi. Thus the sampler Sam simply outputs
a random element of W as the value for a. This can be done efficiently since any candidate for a
(and in particular the members of W ) can be identified by their first n−m bits, and the simulator
is given the list ∪yi=0Zi of impossible values for a which is of length O(t), and therefore the verifier
can finish the sampling in time poly(|τ |) ≥ poly(t) which is allowed.

4.3 Noninteractive Locking Schemes Cannot Be Efficient

By a noninteractive locking scheme (NLS), we mean an ILS where the commitment phase is nonin-
teractive and sender S only participates in the decommitment phase. Note that an efficient locking
scheme by definition uses poly(n)-sized circuits to implement the locking oracle σ, and therefore σ
can have at most poly(n) entropy. In this section we show that there exist no efficient NLS with
super-polynomial security.

Since we are going to prove that NLS’s cannot be efficient, we need to deal with unbounded
senders. Thus we can no longer assume that the decommitment phase is only a message (b, rS) sent
to the receiver, because the randomness rS used by the sender can be exponentially long. Therefore
to prove the strongest possible negative result, we allow the decommitment phase of a NLS to be
interactive.

The following theorem clearly implies Part 2 of Theorem 4.1.

Theorem 4.14. Let Λ = (S, σ,R) be any NLS for message space {0, 1} in which the function σ of
the locking oracle has Shannon entropy at most H(σ) ≤ uq

1000 when the committed bit b is chosen
at random b ← {0, 1}. Let u be an upper bound on the number of oracle queries to σ asked by the
receiver R in the decommitment phase. Then either of the following holds:

• Violation of binding: There is a fixed locking oracle σ̂, and a sender strategy Ŝ such that
when σ̂ is used as the locking orale, for both b = 0 and b = 1, Ŝ can decommit successfully
with probability at least 4/5.

• Violation of hiding: There exists an unbounded receiver R̂ who can guess the random bit
b← {0, 1} used by (S, σ) with probability at least 4/5 by asking at most u queries to the locking
oracle σ.

Intuition behind Theorem 4.14. Our main tool in proving Theorem 4.14 is the notion of
“canonical entropy learner” (EL) introduced in Definition 4.15. Roughly speaking, EL is an efficient-
query (computationally unbounded) algorithm which learns a randomized function f (with an oracle
access to f) under the uniform distribution assuming that f has a bounded amount of entropy.
EL proceeds by choosing to ask one of the “unbiased” queries of f at any step and stop if such
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queries do not exist. An unbiased query x is one whose answer f(x) is not highly predictable with
the current knowledge gathered about f by EL. Whenever EL chooses to ask a query it learns
non-negligible entropy of f , and thus the process will stop after poly(n) steps. On the other hand,
when EL stops, all the remaining queries are biased and thus will have a predictable answer over
the randomness of f . We prove that either the receiver is able to find out the secret message of the
sender (in an NLS) by running the EL algorithm, or otherwise if by the end of the learning phase
still part of the entropy left in the locking oracle is hiding the secret message, then a malicious
prover can plant at least two different messages in the locking oracle in such a way that it can
decommit to successfully.

Notation. In the following, for clarity, we use bold letters to denote random variables and use
the non-bold version of the bold variables to denote the samples of that random variable: x← x.

Definition 4.15 (Canonical entropy learner). Suppose f is a random variable with the support
set {f | f : {0, 1}n → {0, 1}} of all Boolean functions defined over n bits of input. The canonical
entropy learner ELf

ε is an oracle algorithm with access to f which asks its queries as follows. At
any time there is a set Q of query/answer pairs that ELf

ε knows about f . Then if there is any new
query x (outside of Q) for which ε ≤ Pr[f(x) = 0 | Q] ≤ 1− ε (in which case we call x an ε-unbiased
query of f with respect to Q) then ELf

ε asks the lexicographically first such x. ELf
ε continues asking

as long as there is any ε-unbiased queries left. We call a query x (1 − ε)-biased (with respect to
Q), if it is not ε-unbiased.

Lemma 4.16. Suppose ε < 1/2 and let the random variable Q be the set of query/answer pairs
that ELf

ε learns when interacting with f . Then it holds that E[|Q|] ≤ H(f)/ε where H(·) is the
Shannon entropy.

Proof. When x is an ε-unbiased query of f with respect to Q, then conditioned on Q, f(x) has
Shannon entropy at least H(f(x) | Q) ≥ ε log(1/ε)+(1− ε) log(1/(1− ε)) > ε log(1/ε) > ε. Suppose
x1, . . . , x|Q| are the queries asked by ELf

ε and x|Q|+1, . . . , x2n are the remaining queries not asked
by ELf

ε in the lexicographic order, and suppose Qi is the set containing the pairs of the queries
x1, . . . , xi joint with their answers. Since the information about x1, . . . , xi and f(x1), . . . , f(xi) is
encoded in Qi−1, therefore it holds that H(f) =

∑
i∈[2n]H(f(xi) | Qi−1). Note that

H(f(xi) | Qi−1) = Pr[|Qi| ≥ i]H(f(xi) | Qi−1 ∧ |Qi| ≥ i) + Pr[|Qi| < i]H(f(xi) | Qi−1 ∧ |Qi| < i) .

We claim that H(f(xi) | Qi−1 ∧ |Qi| ≥ i) ≥ ε. The reason is that we are conditioning on the
cases of Qi−1 which determine xi as an ε-unbiased point (and we do not condition on any more
information). Therefore it holds that

H(f) =
∑
i∈[2n]

H(f(xi) | Qi−1)

≥
∑
i∈[2n]

Pr[|Qi| ≥ i]H(f(xi) | Qi−1 ∧ |Qi| ≥ i)

≥
∑
i∈[2n]

Pr[|Qi| ≥ i]ε = εE[|Q|],

and so E[|Q|] ≤ H(f)/ε.
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Now we turn to proving Theorem 4.14.

Proof. (of Theorem 4.14)
For simplicity, and without loss of generality, we assume that the oracle σ is Boolean and is

only defined over inputs of length n.
The attack of R̂ is as follows. The receiver runs the canonical entropy learner ELf

ε with ε =
1/100u over the (random) function of the oracle σ (where the randomness of σ comes from the
randomness rS shared with the sender which includes the random bit b← {0, 1}). Recall that the
receiver cannot ask more than u queries. We define Qu to be the set of query/answer pairs that the
receiver (who asks at most u oracle queries) learns about σ. It always holds that Qu ⊆ Q where Q
is the set of query/answer pairs that ELf

ε would learn without stopping after u queries. We call a
set T of query/answer pairs for σ predicting if there exists c ∈ {0, 1} such that Pr[b = c | T ] ≥ 9/10.
Let Qu be the value sampled by the random variable Qu and Q be the value sampled by the random
variable Q. There are two possibilities.

(1) There is a possible Qu (as a value of Qu) where Qu is not predicting and Q = Qu (i.e. there
is no ε-unbiased query conditioned on Qu).

(2) All possible values of Qu (as the result of the receiver’s learning algorithm) are either pre-
dicting or Q 6= Qu.

In the following we prove that Case (1) implies the violation of binding and Case (2) implies
the violation of hiding according to Theorem 4.14.

Case (1). First suppose that Case (1) holds. In particular there is a possible value Q as the
canonical entropy learner’s knowledge about σ such that Q is not predicting, namely:

1/10 < Pr[b = 0 | Q] < 9/10 and 1/10 < Pr[b = 1 | Q] < 9/10 .

Also note that conditioned on Q all the points x out of Q are (1− ε)-biased and thus have a unique
“likely answer”. Namely for each x there is lx such that Pr[σ(x) 6= lx | Q] < 1/100u. Since Q is
not predicting, for all x it holds that:

Pr[σ(x) 6= lx | Q ∧ b = 0] =
Pr[σ(x) 6= lx ∧ b = 0 | Q]

Pr[b = 0 | Q]
<

Pr[σ(x) 6= lx | Q]
1/10

< 1/10u .

(The same also holds if we condition on b = 1.) Therefore in addition to Q, if we condition on
b = 0 or b = 1, still all the points in σ are (1− 1/10u)-biased.

Now we show that the binding property could be violated by a malicious sender and oracle
(Ŝ, σ̂). Consider the following cheating strategy:

1. Distribution of σ̂: Sample two oracles along with their (possibly exponentially long) ran-
domness (σ0, r0), (σ1, r1) according to the distributions (σ0, r0) ← (σ, rS | Q ∧ b = 0) and
(σ1, r1)← (σ, rS | Q ∧ b = 1) and define the oracle σ̂ as follows.

• If σ0(x) = σ1(x) = lx, then σ̂(x) = σ0(x) = σ1(x).

• If σ0(x) 6= lx but σ1(x) = lx, then σ̂(x) = σ0(x).

• If σ1(x) 6= lx but σ0(x) = lx, then σ̂(x) = σ1(x).
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• If σ0(x) = σ1(x) 6= lx, then σ̂(x) = σ0(x) = σ1(x).

2. The algorithm of Ŝ: To decommit to b = 0, the sender Ŝ announces b = 0 and uses r0

as the randomness of S to interact in the decommitment phase. To decommit to b = 1, Ŝ
acts similarly by announcing b = 1 and using the randomness r1 in its interaction of the
decommitment phase.

Claim 4.17. If the sender generates the locking oracle σ̂ (from σ0, σ1) as above and decommits to
zero by announcing 0 and using the randomness r0 in the decommitment phase, then the receiver
will accept the interaction with probability at least 9/10.

Proof. After running the decommitment to zero, we call the experiment a defeat if the receiver asks
any query x such that σ1(x) 6= lx, and will call it a win otherwise. Note that if the experiment is
a win, then the receiver will accept the decommitment because all of the answers he gets for his
queries from σ̂ will agree with σ0.

Now consider another experiment in which σ̂ is again generated exactly the same as above, but
now σ0 is used during the decommitment phase. It is clear that now the receiver will accept, but
again, we will call the experiment a defeat if the receiver asks any query x (from σ0) such that
σ1(x) 6= lx.

We claim that the probability that the first experiment is a defeat is exactly the same as that of
the second experiment. The reason is that, although the receiver in general behaves differently in
the two experiments, the difference starts by asking a query x such that σ1(x) 6= lx, and otherwise
all the answers given to to the receiver will be the same between σ̂ and σ0.

Now we claim that the probability of defeat in the second experiment is less than 1/10. It would
finish the proof since in that case the probability of defeat in the first experiment also will be less
than 1/10, and therefore the receiver will accept in the first experiment with probability more than
9/10.

In the second experiment we can pretend that σ1 is sampled after the verification is done using
the oracle σ0. The reason is that the behavior of the receiver is defined only based on σ0, while σ1 is
only used to determine whether or not the experiment ends in defeat. So suppose X = {x1, . . . , xu}
be the queries of the receiver before sampling σ1. Then for each one of xi ∈ X it holds that
Pr[σ1(x) 6= lx] < 1/10u and by the union bound, the probability that for at least one of the x ∈ X,
we get σ1(x) 6= lx is less than 1/10.

By symmetry, the same argument shows that if σ̂ is generated as above and the sender pretends
that σ1 is in the oracle and decommits to b = 1 (by using r1) the process leads to the accept of the
receiver R with probability more than 9/10.

We call a fixed (σ̂, r0, r1) generated as above a good sample for b = 0 if the decommitment of Ŝ
to b = 0 as above leads to accept with probability at least 4/5. A simple average argument shows
that the sampled (σ̂, r0, r1) is good for b = 0 with probability more than 1/2. A similar argument
shows that the sampled (σ̂, r0, r1) is also good for b = 1 with probability more than 1/2. By the
pigeonhole principle there is a fixed (σ̂, r0, r1) which is both good for b = 0 and b = 1. Using this
(σ̂, r0, r1) the sender can decommit to both b = 0 and b = 1 and succeed with probability at least
4/5.
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Case (2). If Case (2) holds, then we claim that the receiver R can guess the bit b with probability
at least 4/5. The reason is that by Lemma 4.16 it holds that E[|Q|] ≤ H(σ)/ε ≤ u/10. Therefore
by Markov inequality, with probability at least 9/10 it holds that |Q| ≤ u in which case Qu = Q.
Moreover since Case (2) holds, whenever Q = Qu, then Q is predicting and the receiver R can
guess b correctly with probability at least 9/10. Therefore the receiver R would guess b correctly
with probability at least (9/10)(9/10) > 4/5 which is a violation of hiding according to Theorem
4.14.

5 The Impossibility of Oblivious Transfer

In this section we prove that in the stateless token model, there is no statistically secure protocol for
Oblivious Transfer (OT), when the only limitation on malicious parties is being bounded to make
polynomially many queries to the tokens. We first define the (bit) oblivious transfer functionality.
For simplicity we use a definition with completeness one, but our negative result easily extends to
protocols with imperfect completeness.

The stateless token model. In the stateless (tamper-proof hardware) token model, two (com-
putationally unbounded) interactive algorithms A and B will interact with the following extra
feature to the standard model. Each party at any time during the protocol can construct a circuit
T and put it inside a “token” and send the token T to the other party. The party receiving the
token T will have oracle access to T and is limited to ask poly(n) number of queries to the token.
The parties can exchange poly(n) number of tokens during the interaction. The stateless token
model clearly extends the IPCP model in which there is only one token sent from the prover to the
verifier in the beginning of the game. Therefore proving any impossibility result in the stateless
token model clearly implies the same result for the the IPCP model. It is easy to see that without
loss of generality the parties can avoid sending “explicit messages” to each other and can only use
tokens (with messages planted inside the tokens) to simulate all the classical communication with
the tokens.

Definition 5.1 (Oblivious Transfer). A protocol (S,R) for oblivious transfer (in the standard or
the token model), consists of a sender S and a receiver R. The parties both receive 1n where n is
the security parameter. The sender S holds the secret input (x0, x1), xi ∈ {0, 1}, and the receiver R
holds the input i ∈ {0, 1}. At the end of the protocol, the receiver outputs y where (with probability
one) it holds that y = xi. We define the following security measures.

• Receiver’s security: This property guarantees that the sender is not able to find out which
of x0 and x1 is read by the receiver. Formally, for any malicious sender Ŝ who asks poly(n)
token queries and outputs j, it holds that Pri←{0,1}[i = j] ≤ 1/2 + neg(n).

• Sender’s security: This property guarantees that no receiver can read both of x0 and
x1. Formally, for any malicious receiver R̂ who asks poly(n) token queries, with probability
1− neg(n) the view v

R̂
of R̂ satisfies either of the following:

Pr
(x0,x1)←{0,1}2

[x0 = 0 | v
R̂

] =
1
2
± neg(n) or Pr

(x0,x1)←{0,1}2
[x1 = 0 | v

R̂
] =

1
2
± neg(n).
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Oblivious transfer by semi-honest parties. If one of the parties is semi-honest (i.e. runs
the protocol honestly, and only remember’s its view for further off-line investigation), then in fact
unconditionally secure OT is possible in the stateless token model. If the receiver is honest, then
the protocol is simply a token T sent from the sender which encodes T (0) = x0, T (1) = x1. The
receiver will read T (i) to learn xi. Moreover it is well known that secure OT in one direction implies
the existence of secure OT in the other direction, so if the sender is semi-honest unconditionally
secure OT is possible in the stateless token model.

In this section we prove that statistically secure OT is impossible in the stateless token model, if
both parties are slightly more malicious than just being semi-honest. Roughly speaking, we define
the notion of “curious” parties who run the original protocol (honestly), but will ask more queries
from the tokens along the way.7 We will prove that for any protocol (A,B) aiming to implement
OT, there are curious extensions of the original parties (Acur, Bcur) who break the security of the
protocol. More formally we define curious parties as follows.

Definition 5.2. Let (A,B) be a two party protocol in the token model. We call the protocol Acur

a curious extension of A, if Acur runs the same protocol as A, but at any point during the protocol
it might ask arbitrary queries from tokens sent from B. We call Acur efficient, if it asks only poly(n)
queries totally. By QAcur we denote the set of triples representing total query/answer information
that Acur gathers about the tokens it receives, and we use QA to denote only the query/answers
for the underlying emulated algorithm A (and so QA ⊆ QAcur).

We will prove the following theorem.

Theorem 5.3 (No unconditional OT from stateless tokens). Let (S,R) be any protocol for the
oblivious transfer in the stateless token model. Then there are curious extensions (Scur, Rcur) to
the original algorithms where (Scur, Rcur) (and thus (S,R)) is not a secure protocol for oblivious
transfer even when the inputs are random. More formally either of the following holds:

• Violation of sender’s security: When the sender S chooses x0 and x1 at random from
{0, 1} and interacts with Rcur, then Rcur can find out both of x0 and x1 with probability at
least 51/100.

• Violation of receiver’s security: When the receiver R chooses i ← {0, 1} at random and
interacts with Scur, then Scur can guess i correctly with probability at least 51/100.

In the following section we first show that any protocol (S,R) with the following sampling
condition can not implement OT securely (Lemma 5.5). The sampling condition is that one can
sample the randomness of the receiver R conditioned on the view of the sender S. This sampling
condition extends the “accessible entropy” notion introduced by Haitner et al [HHRS07] to the
token model (in an information theoretic way) and is equivalent to saying that the entropy of the
receiver is accessible. Then we show (Theorem 5.8) that for any protocol (S,R), there is a curious
extension Scur, Rcur where almost all the entropy is accessible, and this will prove Theorem 5.3.

7The term “honest but curious” is sometimes used equivalent to “semi-honest”. Our notion is different from
both of them because a curious party deviates from the protocol slightly by learning more but emulates the original
protocol honestly.
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Notation. In the following, for clarity, we use bold letters to denote random variables and use
the non-bold version of the bold variables to denote the samples of that random variable: x ← x.
For example rA will denote the randomness of Alice as a random variable and rA denotes the actual
randomness used by Alice.

5.0.1 Breaking oblivious transfer by accessing the entropy

In the standard model of interaction (without tokens) all the information exchanged between two
parties is represented in the transcript τ of the interaction. This means that information theoreti-
cally, an unbounded Bob can sample from r ← (rB | τ): his own space of randomness conditioned
on what Alice knows about it (which is the transcript of the protocol τ) and vice versa. So informa-
tion theoretically Bob is not committed to anything more than what Alice knows about him (but
of course Bob might not be able to sample from this distribution efficiently). Roughly speaking if
the sampling rB ← (sup(rB) | τ) can be done efficiently at any time during the protocol, [HHRS07]
calls such protocol one with “accessible entropy”.

The fact that in the standard model unbounded parties can access all the entropy makes un-
conditional oblivious transfer to be impossible in this model. The reason is that at the end of the
protocol, either the sender S can find out which bit is read by the receiver R by sampling from
r ← (rR | τ), or otherwise a sample from r ← (rR | τ) will reveal either of the inputs x0, x1 with
probability ≈ 1/2 and thus Bob can find out both of them by taking enough number of samples.
We will formalize this argument in the case of token model in Lemma 5.5 below.

In the token model, however, the information exchanged between the parties is not “shared”
by them. Namely, the set QA (see Definition 5.2) captures the information that the algorithm
A gathers from the tokens he has received from the other party B, and this set is different from
QB. Moreover, it might be impossible for A to find out QB exactly. Therefore if we consider
τ = (QA, QB) to be the transcript of the protocol in the token model, Alice and Bob each know
part of τ , and this makes the above argument (for the impossibility of OT) fail. In fact, as we
said, if either of the parties is semi-honest, then unconditional OT is possible in the stateless token
model.

The following definition generalizes the notion of accessible entropy to the token model (from
an information theoretic perspective).

Definition 5.4 (Accessible entropy in the token model). Let (A,B) be a protocol in the token
model between Alice and Bob. We say the entropy of Bob can be (1 − δ)-accessed if there is a
sampling algorithm SamB as follows. SamB receives a possible view for Bob (r,Q) as input and
outputs another possible view for Bob (r′, Q′) with the following property: With probability at
least 1 − δ over the choice of (rA, rB) ← (rA, rB), if QA, QB denote to the information that Alice
and Bob has gathered from the tokens at any time during the execution of the protocol, it holds
that

SD((rB,QB | rA, QA), SamB(rB, QB)) ≤ δ.

We say that B has δ inaccessible entropy, if the entropy of B is not (1− δ)-accessible.

Comments about Definition 5.4 .
One can define a computational version of Definition 5.4 in the standard model where SamB is

efficient and given τ it samples from a distribution which is δ-close to (rB | τ). It can be shown
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that an interactive algorithm B has non-negligible inaccessible entropy in this definition if and only
if B has non-negligible inaccessible entropy according to the definition of [HHRS07].

[HHRS07] shows that in the standard computational setting non-negligible inaccessible entropy
implies statistically hiding commitments. We shall point out that in the stateless token model, as
we will see, if both parties are “curious enough”, then almost all the entropy can be accessed, but
as we saw in Theorem 4.1 unconditionally secure commitment schemes does exist. The difference
between the standard computational model of interaction and the token model is that in the
standard computational model the sampled r ← (rB | τ) can be used (by a potentially malicious
Bob) as a witness that Bob is running the protocol appropriately and even be used to continue the
protocol without being caught by Alice, but in the token model a sampled r = SamB(rB, QB) might
contradict the future queries of Alice to the tokens she that is holding from Bob. The fact that Alice
can caught Bob’s claim by asking more token queries is highly used in our both Constructions 4.4
and 4.10 of ILS’s. In fact, if one defines a simple commitment scheme as one where the receiver is not
allowed to ask token queries during the decommitment phase, then a similar argument to Lemma
5.5 below shows that simple commitment schemes imply (non-negligible) inaccessible entropy, and
therefore unconditional simple commitments are impossible to achieve in the stateless token model.

Lemma 5.5 (Oblivious transfer needs inaccessible entropy). Let (S,R) be a protocol for random
oblivious transfer where the sender’s inputs x0, x1 are part of rS and receiver’s input i is part of
rB. If (S,R) has perfect completeness and the entropy of the receiver R can be 0.99-accessed, then
either of the following holds:

• Violation of sender’s security: When the sender S interacts with R, then R can find out
both of x0 and x1 correctly with probability at least 51/100.

• Violation of receiver’s security: When the receiver R chooses i ← {0, 1} at random and
interacts with S, then S can guess i correctly with probability at least 51/100.

Proof. We show that if SamR 1-accesses the entropy, then either of the security failures above
holds with probability at least 53/10. Using the actual SamR (which 0.99-accesses the entropy) will
change the success probability of the attacks by at most 2/100 which still remain at least 51/100.
So in the following we assume that Bob also can sample from the distribution (rR | rS , QS) where
by QS we denote the final set of query/answers that the sender learns about the receiver’s tokens.
We call (rS , QS) a predicting pair, if either Pr[i = 0 | rS , QS ] ≥ 9/10, or Pr[i = 1 | rS , QS ] ≥ 9/10.
Now there are two possible cases:

• Pr[(rS , QS) is predicting] ≥ 1/10: Then the sender can predict i by probability at least
1/2 + 1/10 > 53/10 as follows: Whenever (rS , QS) is predicting, use the predicted value, and
whenever it is not use a random guess. This violates the security of the receiver.

• Pr[(rS , QS) is predicting] ≤ 1/10: Therefore, with probability at least 9/10 (rS , QS) is not
predicting. For a non-predicting (rS , QS), by sampling (r′R, Q

′
R) ← (rR,QR | rS , QS) we get

either of the cases i = 0 or i = 1 with probability at last 1/10. By the assumed perfect
completeness of the protocol the output of the sampled (r′R, Q

′
B) is equal to xi. Note that

sender can sample from (rR,QR | rS , QS) by using the sampler SamR. When (rS , QS) is not
predicting, by sampling n samples (r′R, Q

′
R) ← (rR,QR | rS , QS), the receiver can find both

of x0 and x1 with probability 1 − neg(n). Therefore, since (rS , QS) is not predicting with
probability 9/10, the receiver can find both inputs of the sender with probability at least
(9/10) · (9/10− neg(n)) > 53/100.
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5.0.2 Curious extensions who access the entropy

In this section we define a specific curious extension to the protocols in the stateless token model
which we call “canonical” curious extensions and prove that almost all the entropy of such protocols
can be accessed. Roughly speaking, a canonical curious extension of an interactive algorithm is a
curious extension of the original protocol where the parties ask their “extra” token queries according
to the canonical entropy learner of Definition 4.15. Each time that an unbiased query q is asked,
it reveals a noticeable amount of information about the other party’s private randomness. By the
same argument as Lemma 4.16, since the entropy H(rA) +H(rB) ≤ poly(n) is bounded, by asking
only efficient number of queries one can learn enough information to predict the answer to any other
(fixed) query to the tokens. In particular, the answer to the query that is going to be asked in the
emulation of the original protocol will be predictable, so we can ignore asking such queries and use
the predicted answers in the emulation of the original protocol. We call the new protocol which
uses the predicted values an “ideal” protocol (Aid, Bid) which will simulate the original protocol
(A,B) up to 1/poly(n) statistical distance.

Finally, the main point is that in the ideal protocol the parties know exactly what the other
party knows about them! The proof uses induction. Assuming that Alice and Bob both know
(QAid

, QBid
), they can find out which queries are ε-unbiased from Alice’s and Bob’s point of view.

When Alice is asking such a query Bob knows the query and its answer (since it is from a token
generated by Bob) and vice versa. Therefore, (rAid

, QAid
) will determine QBid

and (rBid
, QBid

) will
determine QAid

and in a sense we are back to the standard model where the transcript is known to
both parties, and thus all the entropy can be accessed!

It will be easier for us to first define the ideal experiment Ideal and then define how the canonical
curious parties behave.

Definition 5.6 (Ideal experiment.). Let (A,B) be a protocol in the stateless token model. The
protocol (Aid, Bid) will depend on (A,B) and will be executed in the experiment Ideal as follows.

• Randomness: (Aid, Bid) will use the same randomness (rA, rB) and will (try to) emulate
(A,B).

• Set of token query/answers: (Aid, Bid) will inductively update the sets QAid
and QBid

which encode the information they have gathered from the other party’s tokens so far.

• Mutual Knowledge: A crucial point is that QAid
and QBid

will be known to both Alice and
Bob inductively. Namely, Aid can find out the updates to the set QBid

without Bid explicitly
revealing that information to Aid and vice versa. How this condition holds and how the
emulation of (A,B) is done is clarified next.

• Emulation: Suppose during the emulation we are at a time where A needs to ask the query
q0 from a token T . Instead of doing so, Aid runs the canonical entropy learner of Definition
4.15 over the tokens (TB1 , . . . , T

B
i ) that he holds from Bob. Namely, Aid considers the uniform

distribution of (rA, rB) consistent with the “transcript” of the interaction: (QAid
, QBid

). Note
that, by induction’s assumption Aid knows QBid

as well. Now if there is any query q to
any of the tokens (TB1 , . . . , T

B
i ) sent from Alice such that q is ε-unbiased, then Aid asks the

lexicographically first such query q1 and updates QAid
. We stress that since Bid knows also
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QAid
, he is also able to find the query q1, and moreover since this query is asked to one of

the tokens that Bob has generated, Bid knows the answer as well. So Bob also knows the
update to the set QAid

the same as Alice. When Aid is done with the learning phase before
asking q0, it not ask the query q0, but rather will use the likely answer lq0 which is uniquely
determined by the updated (QAid

, QBid
) (but of course lq0 might be different from the actual

solution provided by the token). Bid will emulate B similarly.

Now we define the experiment CanCur in which a canonical curious extension of the protocol
(A,B) is defined.

Definition 5.7 (Canonical curious extensions). Let (A,B) be a two party protocol in the stateless
token model. A Canonical Curious extension of A denoted by Acc receives two parameters ε: the
curiosity parameter and u: the upper bound on the number of extra queries asked by A. Acc acts
in the experiment CanCur as follows:

• Acur runs the algorithm A with randomness rA and emulates the interaction of A with B.
The set QA denotes the set of token query/answers corresponding to this emulation.

• Acur also keeps updating a set of token query/answers QAid
by pretending that it is being

executed in the experiment Ideal. Acur stops asking more extra queries (i.e. the queries out
of QA) whenever |QAid

| = u. Note that in CanCur (as opposed to CanCur), Acc does ask the
emulated queries of A from the tokens and uses the answer for further computations.

• The total token queries/answer knowledge of Acur is encoded in QAcur = QA ∪QAid
.

Now we prove the following theorem showing that by taking ε small enough, one can access
almost all the entropy of (Aid, Bid) efficiently.

Theorem 5.8 (Canonical curious parties can access the entropy). Let (A,B) be a protocol in the
stateless token model between Alice and Bob where they totally ask k = poly(n) number of queries
to the tokens exchanged. For a given δ = 1/poly(n) let ε be such that δ = 2(εk +

√
εk) and let

u = |rA|
kε2

. If ε is used as the curiosity parameter and u is used as the upper-bound parameter, then
the entropy of Bcc in (Acc, Bcc) is (1− δ)-accessible.

Note that Theorem 5.8 and Lemma 5.5 together imply Theorem 5.3 as a corollary.

Intuition. Roughly speaking Theorem 5.8 follows from the following facts:

1. Entropy is accessible in Ideal: The entropy of Aid is 1-accessible, because QAid
and QBid

are known to both parties at any time during the protocol.

2. Parties are efficient in Ideal: By Lemma 4.16 Aid on average asks at most H(rB)/ε =
|rB|/ε ≤ poly(n) number queries.

3. Ideal and CanCur are close: As long as the likely answers used by Aid and Bid for the
emulation of (A,B) are correct, the two experiments Ideal and CanCur are exactly the same.
Let WG (Wrong Guess) be the event that one of these likely answers used is incorrect. By
definition, he probability that WG happens at any particular query in Ideal is at most ε, and
therefore the probability of WG is bounded by ε · k. By taking ε small enough we can make
ε · k arbitrary small.
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The formal proof follows.

Proof. (of Theorem 5.8) The sampling algorithm SamB in CanCur will perform the sampling by
simply pretending that it is being used in the experiment Ideal (by ignoring QB and only using
QBid

and rB). We will show that with probability 1− δ over (rA, rB) the sampler SamB will sample
δ-close to the right distribution all along the execution of CanCur.

As a mental experiment, we sample (rA, rB)← (rA, rB) and run both of the experiments CanCur
and Ideal in parallel with the same randomness (rA, rB). We use the notation Prcc[·] to denote the
probability of an event in CanCur and use Prid[·] to denote the probability of an event in Ideal.

Let WGi to be the event in the experiments CanCur and Ideal that holds iff the i’th query qi
asked by Alice or Bob in is not the likely answer, and define the event WG =

∨
i WGi.

We modify CanCur slightly and let the size of QAid
and QBid

to grow beyond u. Our proof
will take care of this issue indirectly. By this change, it is easy to see that as long as WG does
not happen the experiments CanCur and Ideal are exactly the same. In particular it holds that
Prcc[WG] = Prid[WG]. Since (rA, rB) determines the whole execution of the experiments CanCur
and Ideal we can talk about the event WG(rA, rB), and Pr(rA,rB)[WG] is the same in CanCur and
Ideal.

The following claim shows that by taking ε small enough CanCur and Ideal will become statis-
tically close.

Claim 5.9. It holds that Pr(rA,rB)[WG] ≤ kε.

Proof. If show that Prid[WGi] ≤ ε the claim follows by union bound over i ∈ [k]. But Prid[WGi] ≤ ε
holds by the definition of the experiment Ideal and ε-unbiased queries.

We call (rA, rB) a good sample if the following conditions hold when (rA, rB) is used to run the
experiments:

1. WG does not happen.

2. |QBid
| and |QBid

| does not pass the upper limit u.

3. At any time during the execution if QAid
, QBid

, QAcc , and QBcc denote the set of query/answers
in the both experiments in that moment it holds that

Pr
id

[WG happened before | QAid
, QBid

] ≤
√
kε and

Pr
cc

[WG happened before | QAcc , QBcc ] ≤
√
kε.

Claim 5.10. Pr[(rA, rB) is good ] ≥ 1− δ.

Proof. By Claim 5.9 the first property holds with probability at least 1− kε.
By Lemma 4.16 and using the Markov inequality the second property holds in Ideal with prob-

ability at least 1− kε. So both properties 1 and 2 hold with probability at least 1− 2kε.
We use Lemma 2.3 with the following parameters X = (rA, rB), F = WG, Zi = (QAid

,QBid
)

where (QAid
,QBid

) their value at the i’th moment and p =
√
kε. Now Lemma 2.3 implies that the

third property holds for Ideal (and similarly for CanCur) with probability at least 1−
√
kε.

Therefore all the properties hold for a random (rA, rB) with probability at least 1−2kε−2
√
kε =

1− δ.
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Suppose the sampled (rA, rB) is a good one. Then, by the fist property, all along the execution
CanCur and Ideal will be the same. The second property will guarantee the efficaciously with respect
to the upper bound u.

Now suppose SamB is run over the input (rB, QBcc) at an arbitrary moment during the execution
of the system. By the first property, the sampler SamB will conclude the correct QAcc . Therefore
SamB will sample exactly according to (rBid

,QAid
| rAid

, QAid
) in Ideal. By the third property the

probability that WG has happened before is at most
√
kε in either of CanCur or Ideal. Finally

we note that if one samples (rB, QBcc) conditioned on (QAid
, QBid

) and conditioned on ¬WG, the
samples have the same distribution in Ideal and CanCur. This means that if (rA, rB) is good, the
sampler SamB will sample 2

√
kε < δ-close to the right distribution. This finishes the proof that

SamB (1− δ)-accesses the entropy of Acc in (Acc, Bcc).

6 Unconditional UC Secure Computation: Encapsulating Tokens
inside Tokens

6.1 The Model

First we define the functionality Fenc that models the fact that the parties can put any number of
received tokens inside a new one. The idea of Fenc, described in Figure 1, is to model the following
real-world functionality: party Pi sends a stateless token M to party Pj . This stateless token may
have encapsulated inside it a number of other stateless tokens which Pi received from other parties
(such encapsulated tokens subsequently become unavailable to Pi after sending out M). Since the
token is stateless, Pj can run M multiple times on inputs of its choice. While running, M can access
its internal tokens in a black box way by querying any of them any number of times. Thus, Fenc

saves the description of the oracle machines it gets from a party in create messages, and lets the
other party run them multiple times. Each machine is uniquely identified by a machine identifier
mid.

6.2 Construction for Unconditional UC Secure Computation

We first show how to construct an unconditional UC secure commitment scheme COM in the token
encapsulation model described above. We then present a construction for unconditional UC secure
OT building on the commitment scheme COM . This in turn implies the existence of unconditional
general UC secure computation by invoking the results from [IPS08, Kil88].

Unconditional UC Secure Commitment The committer Alice wishes to commit to a bit b
to the receiver Bob. We build upon the interactive locking scheme in Section 4. We can get a
commitment scheme in the stateless hardware token model using an interactive locking scheme
where the sender is the committer and the locking oracle is implemented using a stateless hardware
token. We call this commitment scheme com. The commit phase of our commitment scheme COM
proceeds as follows:

• Bob first generates a random string r ← {0, 1}k and uses the commitment scheme com to
commit r to Alice.
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Functionality Fenc

Fenc is parameterized by a polynomial p(·) and an implicit security parameter κ.

Create Upon receiving (create, sid, Pi, Pj ,mid,M,List) from Pi, where M is an Oracle
machine, do:

1. If any of the tokens specified in List is marked unavailable or does not have Pi as the
recipient, do nothing. Else, mark all tokens in List as unavailable. (This step ensures
that a received token cannot be used in constructing multiple other tokens.)

2. Send (create, sid, Pi, Pj ,mid) to Pj .

3. Store (Pi, Pj ,mid,M,List).

Execute Upon receiving (run, sid, Pi,mid,msg) from Pj , find the unique stored tuple
(Pi, Pj ,mid,M). If no such tuple exists or if this token is marked unavailable, do noth-
ing. (This step ensures that a received token cannot be queried after it has been “used up”
in constructing another token.)
Run M(msg). While running if M makes a query specifying mid, check if mid is in List
associated with M . If not, output ⊥.
Else, evaluate the machine mid on the given query recursively and supply the response to
M . Let out be the output of M (out =⊥ if the entire computation does not halt in p(k)
steps). Send (sid, Pi,mid, out) to Pj .

Figure 1: Ideal functionality for stateless tokens with encapsulation
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• Alice breaks the bit b into k pairs of 2-out-of-2 random shares. That is, for all i ∈ [k], Alice
picks b0i and b1i at random such that b0i ⊕ b1i = b. Now ∀i, j, Alice commits bji to Bob using
the commitment scheme com.

• Alice further construct a token T as follows. Alice puts her entire state in T including all
tokens received from Bob, the input and randomness and the protocol transcript so far. The
functionality of T is described in the next step.

• The token T expects as input from Bob a string r′ that Bob committed to in the first step
along with the decommitment to r′ (i.e., the randomness he used to commit to r′ in the first
step). T verifies that the decommitment is valid by possibly querying the encapsulated tokens
Alice received from Bob in the first step. If the check fail, T outputs ⊥. Otherwise, ∀i ∈ [k],
T outputs br

′[i]
i and the decommitment to br

′[i]
i (where r′[i] represents the i-th bit of the string

r′).

• Bob queries T with the string r and its decommitment and gets in return, ∀i ∈ [k], br[i]i and
the decommitment to b

r[i]
i . Bob verifies all the decommitments (by possibly querying the

tokens he received from Alice in the second step. Bob aborts and rejects the commitment in
case any of the decommitments is found invalid.

The decommitment phase for COM simply consists of Alice revealing bji and its decommitment
∀i ∈ [k], j ∈ {0, 1} along with the bit b. Bob verifies that all the decommitments are valid and that
∀i, b0i ⊕ b1i = b. If so, Bob accepts the decommitment to bit b and rejects otherwise.

Proof Sketch. The above protocol can be shown to be UC secure using standard techniques.
Below we only provide the main idea behind the proof and defer the details to the full version.

Corrupted Committer: In this case, the simulator Sim works by extracting the input of the
committer and sending it to the ideal trusted functionality. This can be done using the following
idea. The simulator runs the commit phase honestly with the committer. At the end of the commit
phase, Sim utilizes the equivocability property of the interactive locking scheme to make additional
queries to the token T and get a valid response (thus enabling him to extract b). In other words,
Sim chooses a random string r1 and sends a decommitment to r1. Sim uses the simulator associated
with the equivocability property of ILS to generate such a valid decommitment to r1 (and answer
the queries made by T to the encapsulated token). If T gives a valid answer, Sim computes the
committed bit b (and sends it to the ideal functionality). Else, Sim tries again with another random
string. Sim will terminate in expected polynomial time since T gave a valid response on the first
(honest) query made by Sim.

Corrupted Receiver: In this case, Sim executes the commitment phase honestly and commits
to a random bit. At the start of the decommit phase, Sim gets the bit b to be decommitted to from
the ideal functionality. Then Sim, for each of the k pair of shares, chooses the unopened share to
be such that the XOR of the two shares equals b. Next, Sim uses the equivocability property of
the interactive locking scheme to decommit all his commitments (in step 2 of the protocol) to the
appropriate shares as chosen.

Unconditional UC Secure Oblivious Transfer The sender Alice has the input strings (s0, s1)
while the receiver Bob has the selection bit c. The OT protocol proceeds as follows:
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• Bob commits to its selection bit c using the commitment scheme COM .

• Alice constructs a token G as follows. Alice puts her entire state in G including all to-
kens received from Bob, the input and randomness and the protocol transcript so far. The
functionality of G is described in the next step.

• The token G expects as input from Bob a string c′ that Bob committed to in the first step
along with the decommitment to c′ (i.e., the randomness he used to commit to c′ in the first
step). G verifies that the decommitment is valid by possibly querying the encapsulated tokens
Alice received from Bob in the first step. If the check fail, G outputs ⊥. Otherwise, G outputs
the string sc′ .

• Bob queries G with the string c and its decommitment and gets in return sc as his output of
the protocol. If G aborts without giving a response, Bob takes 0 to be received output.

Proof Sketch. We consider the following two cases separately.
Corrupted Sender: In this case, the simulator Sim works by extracting the input strings of

the sender and sending them to the ideal trusted functionality. This can be done as follows. Sim
commits to a random choice bit in the first step and receives the token G. Sim then simply uses
the equivocation property of the commitment scheme COM to query the token G on both 0 and
1 as the choice bits and get the response (if G aborts in any query, Sim takes 0 to be response).
Sim then sends the two extracted strings to the ideal functionality.

Corrupted Receiver: In this case, Sim simply extracts the choice bit c of the receiver in the
first step. This can be done by using the simulator associated with the commitment scheme COM .
Sim then sends the extracted choice bit c to the trusted functionality and gets the output sc. Sim
then picks sc̄ at random and honestly prepares the token G with {sc, sc̄} as the input strings.
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